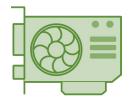
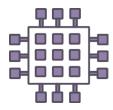


Partly supported by NSF: CyberTraining: Pilot: Quantum Research Workforce Development on End-to-End Quantum Systems Integration



Research Path from Classical Computing

to Quantum Computing



CPU/GPU/FPGA

Weiwen Jiang, Ph.D.

Assistant Professor

QC

Electrical and Computer Engineering
George Mason University
wjiang8@gmu.edu
https://jqub.ece.gmu.edu

Speaker

Weiwen Jiang
Assistant Professor
Electrical and Computer Engineering (ECE)
George Mason University
Room3247, Nguyen Engineering Building
wjiang8@gmu.edu
(703)-993-5083
https://jqub.ece.gmu.edu/

- Education Background
 - Chongqing University (2013-2019)
 - University of Pittsburgh (2017-2019)
 - University of Notre Dame (2019-2021)
- Research Interests
 - Optimization
 - HW/SW Co-Design
 - Quantum Learning

First HW/SW Co-Design Framework using NAS

<u>HW/SW</u> co-Design Application

Algorithm

Hardware

Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seg. [MICCAI'20] [ICCAD'20]

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] GPU [GLSVLSI'21]

Graph-Based

Social Net [GLSVLSI'21]
Drug Discovery [ICCAD'21]

Model Compression Secure Infernece

NASS [ECAI'20] BUNET [MICCAI'20]

Best Paper Award:

IEEE Council on Electronic Design Automation

hereby presents the

2021 IEEE Transactions on Computer-Aided Design Donald O. Pederson Best Paper Award

Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, Jingtong Hu

for the paper entitled

"Hardware/Software Co-Exploration of Neural Architectures"

Masswan Chord
Yao-Wen Chang
President
IEEE Council on Electronic
Design Automation

<u>FPGA</u>

NAS Acc.

HotNAS

[CODES+ISSS'20]

XFER [CODES+ISSS'19*]

ASIC

NAS for Quan. [ICCAD'19]

Compre.-Compilation [IJCAl'21]

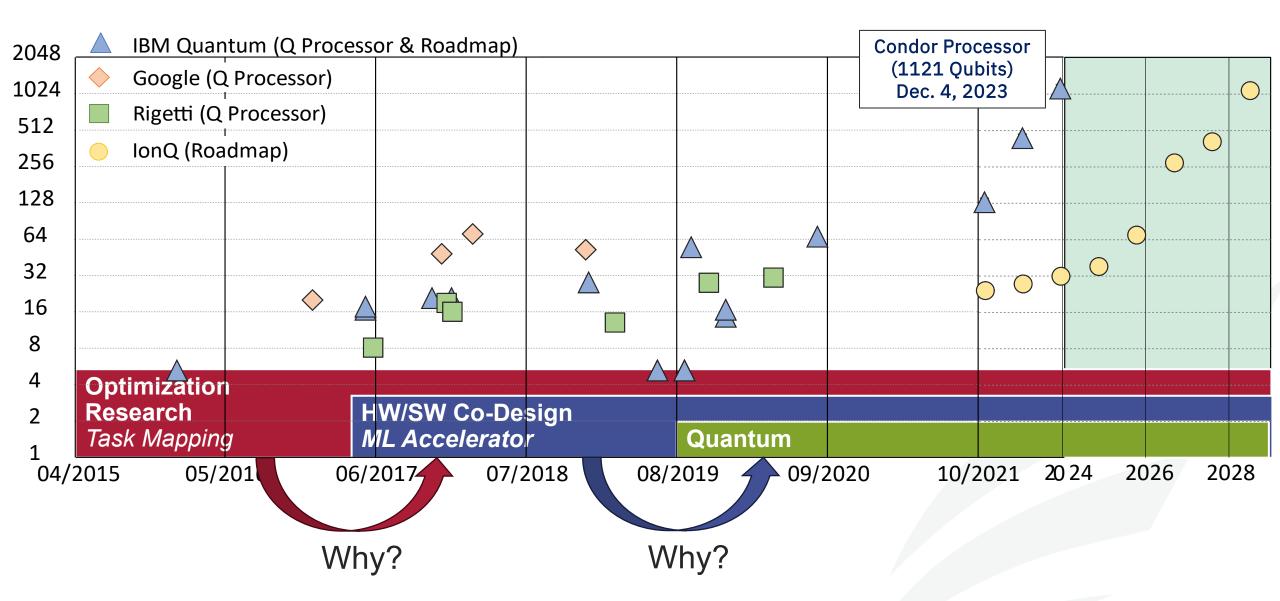
NANDS [ASP-DAC'20*] ASICNAS [DAC'20]

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

Best Paper Nominations:

Research Path was Shifting along with the Growth of Quantum



What is Classical Al Democratization & What is the Challenge?

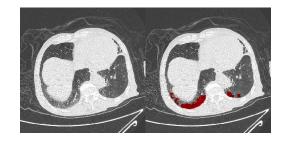
"It's here to collaborate, to augment, to enhance human lives and productivity and make everybody's life better. And related to that, is to **democratize A.I.** in a way that everybody gets benefit. Not just a few, or a selected group." **Fei-Fei Li, 2017**

Medical Al Scenario

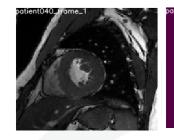
AR/VR in Surgery

Medical Diagnosis

Al Can Perform Medical Tasks



COVID CT Segmentation



Real-Time MRI Segmentation

Let Doctors Design Neural Networks?

Progress of Classical Al Democratization

Google's Initial Contributions

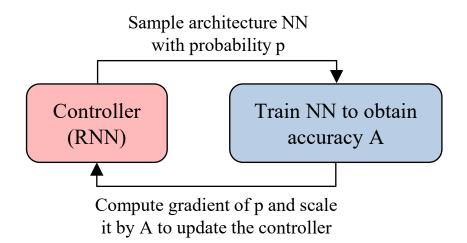
(Neural Architecture Search)

Given: Dataset

Objective: • Automated search for NN (w/o human)

Maximize accuracy on the given dataset

Output: A neural network architecture



[ref] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." *ICLR 2017*

Our Contributions

(Network-Accelerator Co-Design)

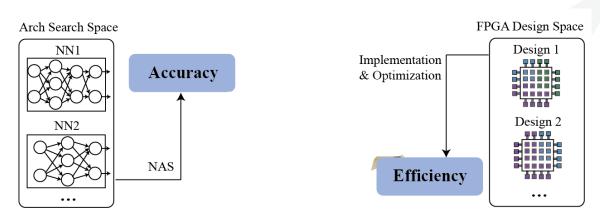
Given: (1) Dataset; (2) Target hardware, e.g., FPGA.

Objective: • Automated search for NN and HW design

Maximize accuracy on the given dataset

Maximize hardware efficiency

Output: A pair of neural network and hardware design



[ref] Jiang, Weiwen, et al. "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search." *DAC 2019*. (BEST PAPER NOMINATION)

[ref] Jiang, Weiwen, et al. "Hardware/software co-exploration of neural architectures", TCAD 2020 (BEST PAPER AWARD)

On-Going Research: System-Support Al for Science

NSF 2027539: RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19. (\$98,349 in total, **Co-PI** with share \$49,174)

Problem and Challenge Light Skin 81.56% Dark Skin 50.62%

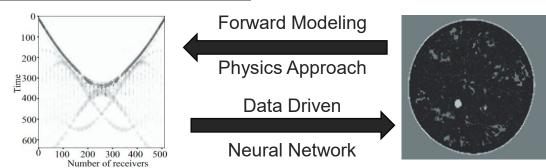
Solutions

- The Larger The Fairer? Small Neural Networks Can Achieve Fairness for Edge Devices --- DAC 2022
- Ensemble Learning for Multi-Dimension AI Fairness --- DAC 2023
- ViT-CNN for Al fairness --- ICCAD 2023

Community building: Chair and Create ML Contest at ESWEEK'23

- 2 Tracks
- 72 Teams
- 702 Submissions
- 6 Winners

Problem: Ultrasound CT Scan



Challenge: Sparse data in USCT



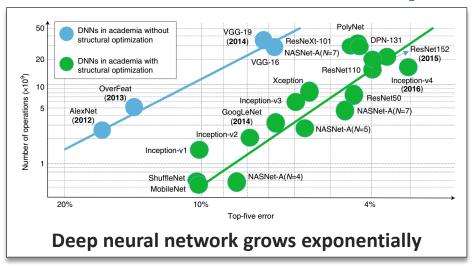
Solution:

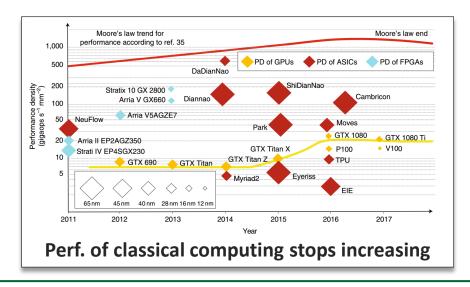
 Physics-guided AI for co-optimize model and data --- Submitted to MICCAI

My first Ph.D. student, Yi Sheng. Estimate graduation: Spring 2025

Student

Bottlenecks in Classical Computing





Medical Al Scenario: (Input size exponentially grows from Radiology to Pathology Imaging)

Radiology Imaging

Radiology Modality Avg. Size (MB)

CT Scan

MRI

98.6

X-ray angiography

157.5

Ultrasound

Breast imaging

38.8

Pathology Imaging

Biopsy Type	Compressed Size(MB)/Study	Original Size (<u>GB</u>)
Dermatopathology	1,392 (20x compression)	27
Head and neck	1,965 (20x compression)	38
Hematopathology	40,300 (40x compression)	1574
Neuropathology	1,872 (20x compression)	37
Thoracic pathology	3,240 (20x compression)	63

[ref] Lauro, Gonzalo Romero, et al. "Digital pathology consultations—a new era in digital imaging, challenges and practical applications." Journal of digital imaging 26.4 (2013).

Outline

- Background and Challenge in Classical Computing
- Potential of Quantum Computing

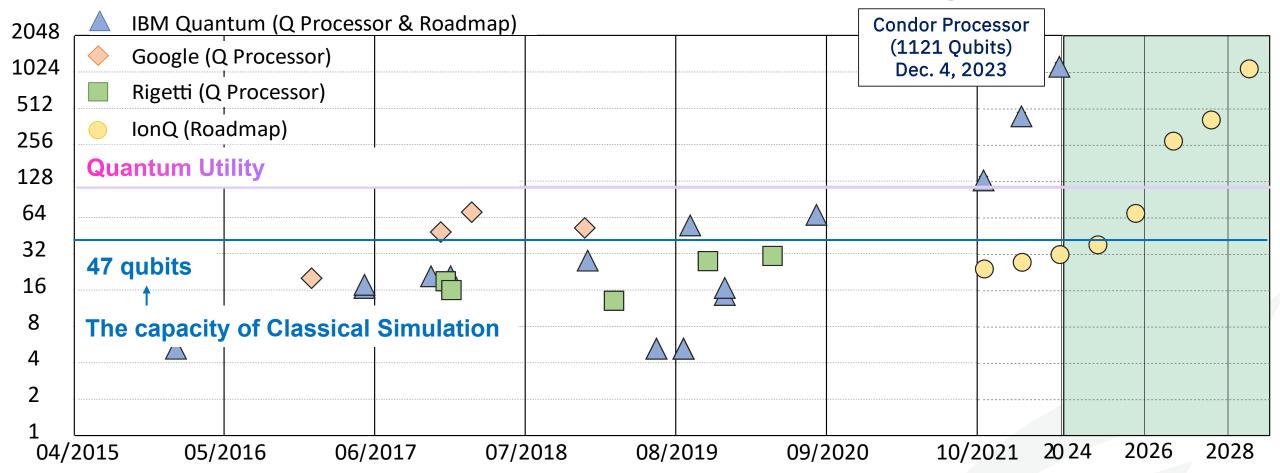
 HW/SW Co-Design

 ML Accelerator

Quantum

- Tasks Impossible for Classical Computing
- Today's Quantum Computers
- Research on Quantum Computing @ JQub
 - Performance, Stability, and Reliability
 - **Domain-specific Quantum Computing**
- Messages to Send

Potential: Tasks Impossible for Classical Computing



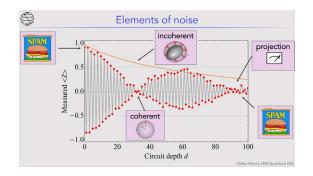
The maximum qubits that supercomputers can simulate for arbitrary circuits is less than 47 qubits.

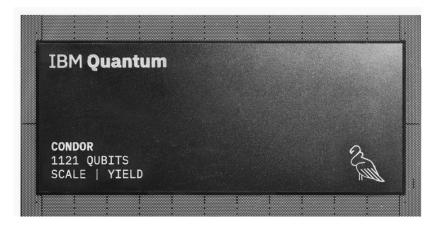
- (1) Summit w/ 2.8 PB memory for 47 qubits;
- (2) Sierra w/ 1.38 PB memory for 46 qubits;
- (3) Sunway TaihuLight w/ 1.31 PB memory for 46 qubits; (4) Theta w/ 0.8 PB memory for 45 qubits.

[ref] Wu, Xin-Chuan, et al. "Full-state quantum circuit simulation by using data compression." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2019.

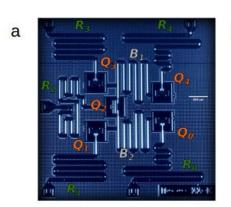
What's the Status of Today's Quantum Computers?

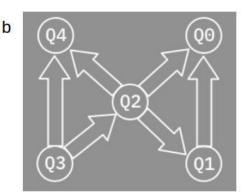
Let's See What Happen at IBM Quantum Summit 2023 (Dec 4, 2023)





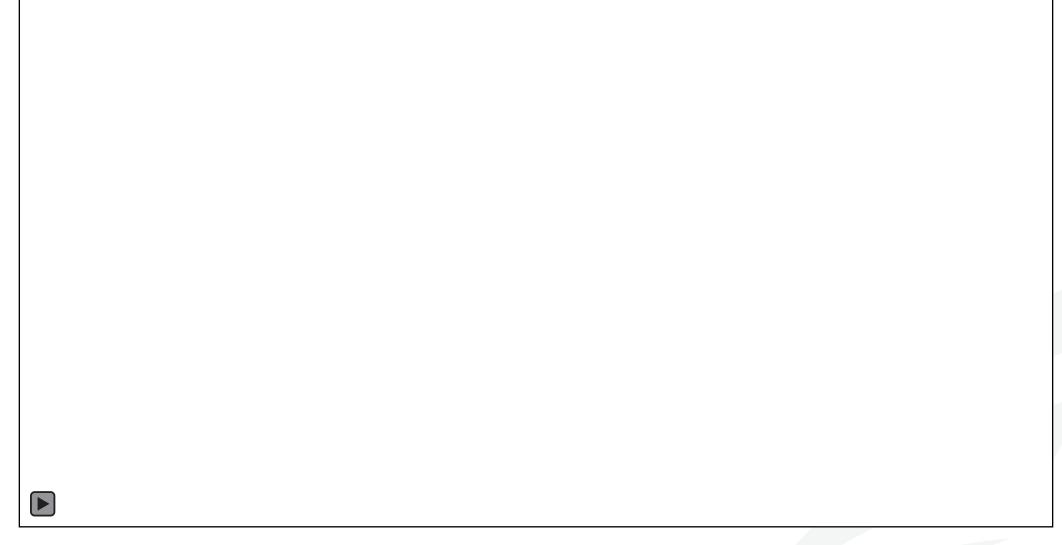
NISQ Era @ 2017





What's the Status of Today's Quantum Computers?

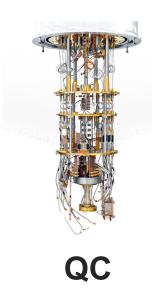
Let's see what Happen at IBM Quantum Summit 2023 (Dec 4, 2023)



What's the Status of Today's Quantum Computers?

What is the Meaning by Quantum Utility --- From IBM Quantum Summit

The Era of Utility means a focus on performance, stability and reliability



Takeaway

- Quantum Utility Era is now coming
- Performance, stability, and reliability are keys to achieve Quantum Utility

Junction of Quantum-Classical Computer-Aided Design Lab (JQub)

Domain users
 are expected to use quantum computers

Let Doctors Design Neural Networks?
Let Doctors Learn Quantum Computing?



IBM Quantum System I

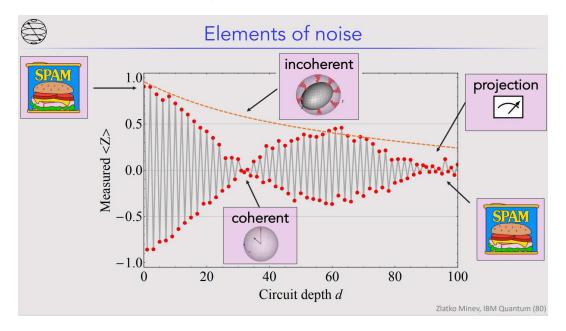
IBM Quantum System II

Outline

- Background and Challenge in Classical Computing
- Potential of Quantum Computing
 - Tasks Impossible for Classical Computing
 - Today's Quantum Computers
- Research on Quantum Computing @ JQub
 - Performance, Stability, and Reliability
 - Domain-specific Quantum Computing
- Messages to Send

Noise Changes the Optimization Surface

Ref: Zlatko K. Minev, IBM Quantum



Our Observation:

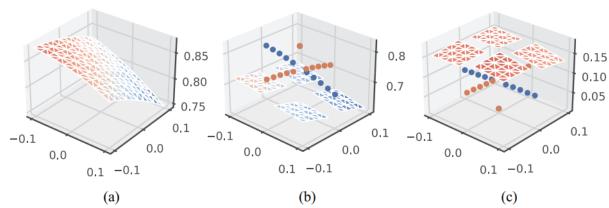


Fig. 3. Noise-aware training may miss optimal solution: (a) Optimization surface of 2-parameter VQC under noise free environment. (b) Optimization surface of the same VQC under a noisy environment. (c) Difference between (a) and (b).

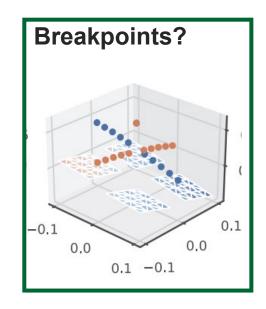
Insight:

Shorter circuit has higher fidelity.

Question:

What are the breakpoints in the noisy optimization landscape?

Motivation: Parameters Affect Circuit Length through Compilation



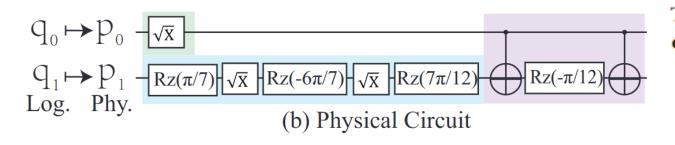
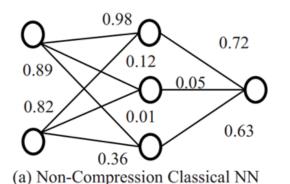


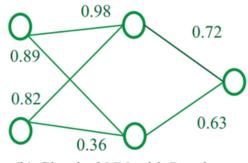
Table 1: circuit depth of compiled quantum gates on IBM quantum processors; parameters are in the range of $[0, 4\pi]$

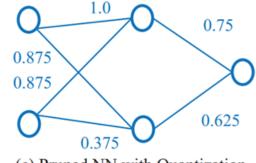
Gate	0	π	2π	3π	4π	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	others
RX	0	1	0	1	0	1	3	1	3	5
RY	0	2	0	2	0	3	3	3	3	4
CRX	0	8	5	9	0	11	11	11	11	11
CRY	0	8	6	8	0	10	10	10	10	10

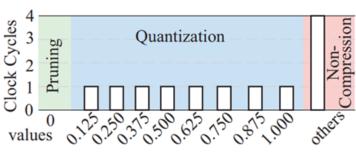
Quantum Neural Network Compression @ ICCAD'2022

Model compression in Classical ML is to improve hardware efficiency







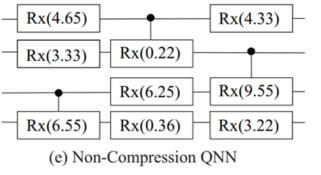


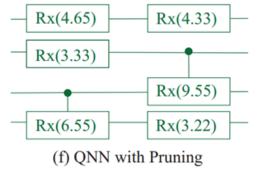
(b) Classical NN with Pruning

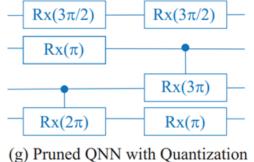
(c) Pruned NN with Quantization

(d) Cost of Different Levels in Classical NN

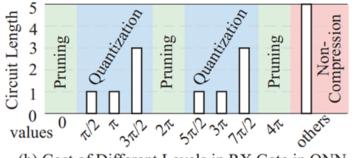
Model compression in Quantum ML can reduce circuit length, and thus, further provide high fidelity











(h) Cost of Different Levels in RX Gate in QNN

CompVQC Framework: Experiment Results

Datasets		Syn-Dat	aset-4	Syn-Dataset-16			
Compression Method		Acc.	TCD	Acc.	TCD		
		(vs. Baseline)	(Speedup)	(vs. Baseline)	(Speedup)		
Qiskit Aer	Vanilla VQC Comp-VQC	94%(0)	23(0)	96%(0)	51(0)		
	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)		
IBM Q	Vanilla VQC	79%(-15%)	23(1.00×)	86%(-10%)	51(1.00×)		
	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)		

Acc.(vs. Baseline)	ibm_lagos	ibm_perth	ibm_jakarta
Vanilla VQC(TCD=23)	79%(0)	86%(0)	92%(0)
CompVQC(TCD=11)	99%(20%)	98%(12%)	100%(8%)

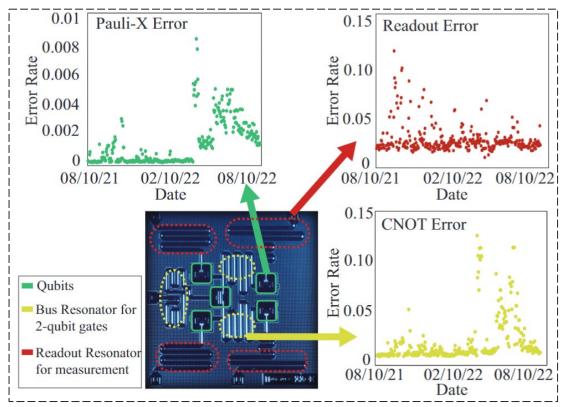
• CompVQC can reduce circuit length by **2X**

• The accuracy is higher in a noisy environment

Insights:

- ✓ CompVQC can improve robustness of QNN
- × CompVQC is not aware of noise

Unstable Quantum Noise Leads to Performance Changes

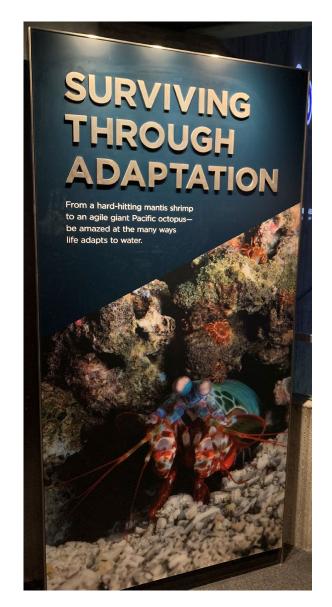


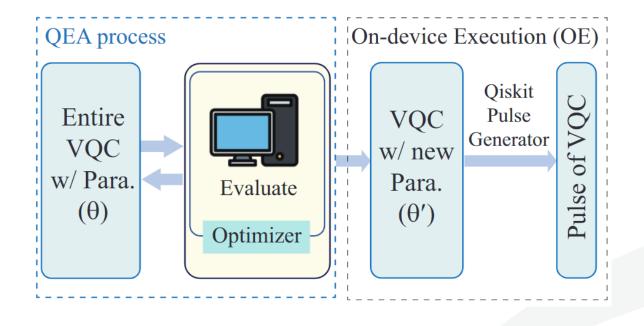
(a) Fluctuating quantum noise on real quantum computer (1-year long daily profiling)

Insight:

- Temporal reproducibility or reliability of a quantum learning model.
- Users may not be aware of the performance changes.

Quantum Error Adaptation @ DAC 2023

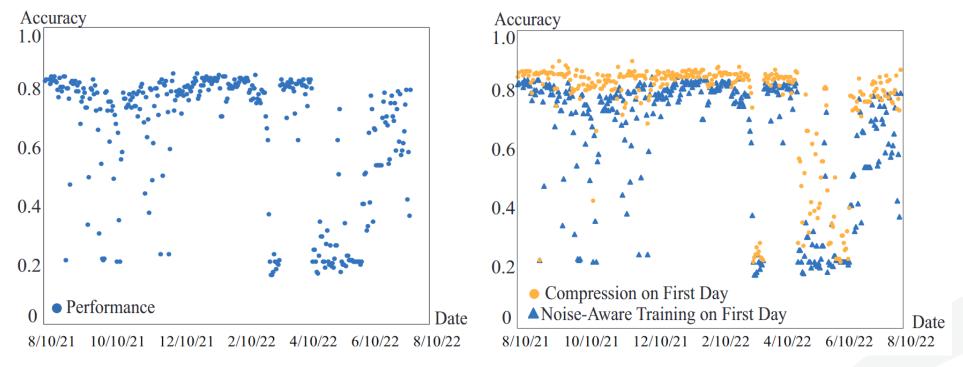




Fluctuating Quantum Noise

Observation: Fluctuating noise can collapse the model accuracy of a noise-aware trained QNN model

Observation: Compression can boost the performance of QNN than noise-aware training, but not enough

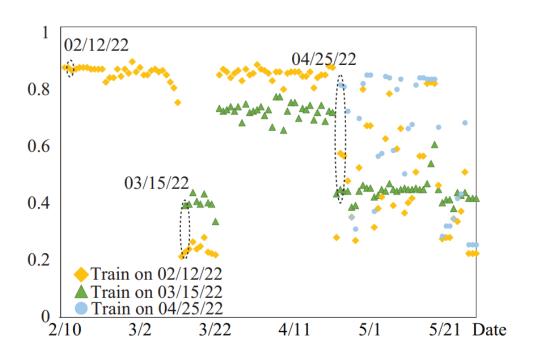


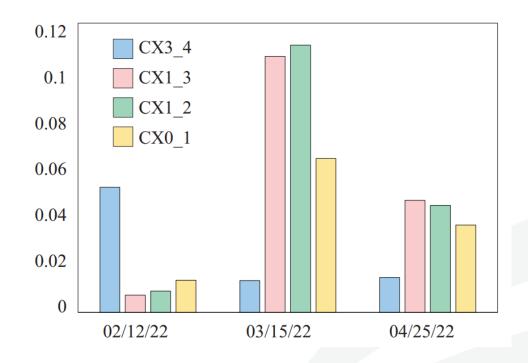
The accuracy of QNN on 4-class MNIST from August 2021 to August 2022 on IBM backend belem using Qiskit Simulation.

Battle Against Fluctuating Quantum Noise

Observation: Models Compressed on one noise level have different performance on different days

Observation: Models Compressed on different noise levels (dates) have different performance on the same day





1 Noise aware compression

2 Model Repository

Battle Against Fluctuating Quantum Noise

Solution: Offline + Online

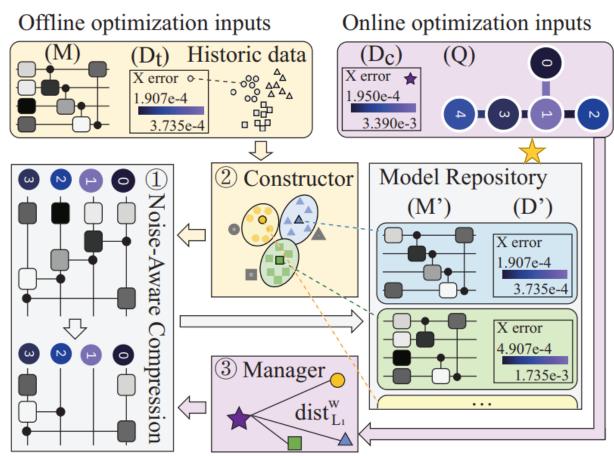


Fig. 5. Illustration of the proposed Compression-Aided Framework (QuCAD).

Offline:

 Use historic data to construct a repository by clustering

Online:

- Select a model to do inference
- Maintain the repository: whether to generate new models into the model repository manager

QuCAD: Experiment Results

Significantly improve the number of days for the desired accuracy

TABLE I

PERFORMANCE COMPARISON OF DIFFERENT METHODS ON 3 DATASETS IN CONTINUS 146 DAYS WITH FLUCTUATING NOISE.

CompVQC

Dataset	Method	Mean	vs.	Variance	Days	vs.	Days	vs.	Days	vs.
		Accuracy	Baseline		over 0.8	Baseline	over 0.7	Baseline	over 0.5	Baseline
	Baseline	59.35%	0.00%	0.070	24	0	93	0	100	0
-	Noise-aware Train Once [4]	58.69%	-0.65%	0.060	8	-16	92	-1	100	0
4-class	Noise-aware Train Everyday	59.39%	0.05%	0.070	28	4	83	-10	99	-1
MNIST	One-time Compression [15]	68.44%	0.00%	0.050	80	56	102	9	117	17
1	QuCAD w/o offline	72.31%	12.96%	0.030	77	53	98	5	134	34
	QuCAD (ours)	75.67%	16.32%	0.020	100	76	134	41	134	34
	Baseline	37.85%	0.00%	0.006	0	0	0	0	8	0
	Noise-aware Train Once [4]	54.38%	16.53%	0.043	29	29	46	46	70	62
Iris	Noise-aware Train Everyday	56.62%	18.78%	0.044	38	38	56	56	72	64
IIIS	One-time Compression [15]	69.20%	31.36%	0.043	84	84	90	90	103	95
	QuCAD w/o offline	75.30%	37.46%	0.025	84	84	104	104	128	120
	QuCAD (ours)	76.73%	38.88%	0.015	83	83	108	108	141	133
Seismic Wave	Baseline	68.40%	0.00%	0.014	18	0	70	0	137	0
	Noise-aware Train Once [4]	68.85%	0.45%	0.014	19	1	78	8	137	0
	Noise-aware Train Everyday	68.28%	-0.11%	0.013	22	4	69	-1	138	1
	One-time Compression [15]	78.99%	10.59%	0.007	80	62	130	60	144	7
	QuCAD w/o offline	82.34%	13.95%	0.001	110	92	145	75	146	9
	QuCAD (ours)	83.75%	15.36%	0.001	133	115	146	76	146	9

Accuracy > 80% (146 days in total)

Accuracy > 70% (146 days in total)

• MINST: 24 -> 100

MINST: 93 -> 134

• Iris: 0 -> 84

• Iris: 0 -> 108

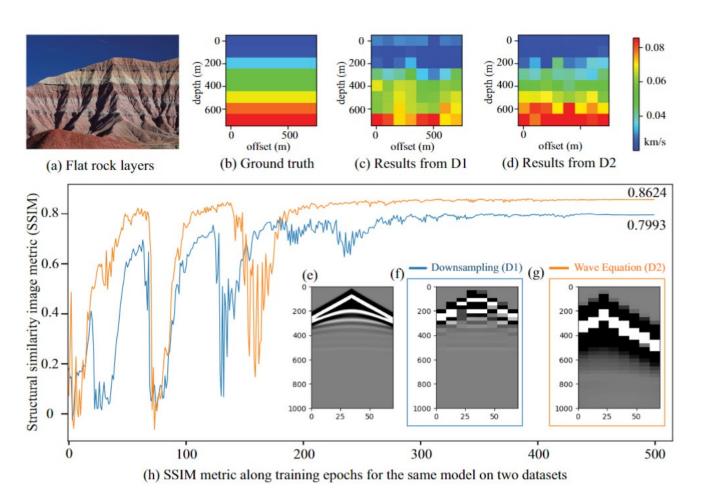
• Seismic wave: 18 -> 133

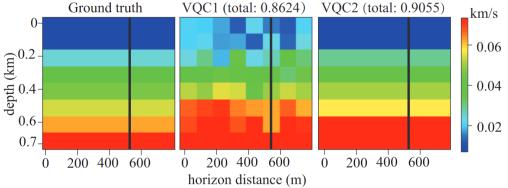
Seismic wave: 70 -> 146

Outline

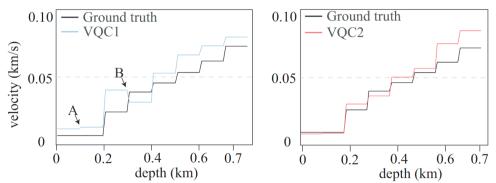
- Background and Challenge in Classical Computing
- Potential of Quantum Computing
 - Tasks Impossible for Classical Computing
 - Today's Quantum Computers
- Research on Quantum Computing @ JQub
 - Performance, Stability, and Reliability
 - Domain-specific Quantum Computing
- Messages to Send

Quantum Learning for Geophysics @ DAC 2024





(a) Visualization of outputs from two VQCs



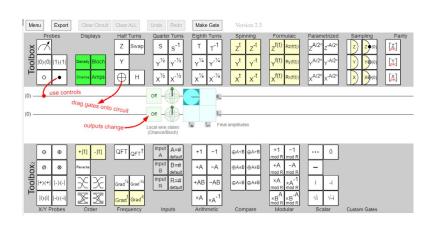
(b) Vertical velocity profiles of inversion results at x = 500 m

Outline

- Background and Challenge in Classical Computing
- Potential of Quantum Computing
 - Tasks Impossible for Classical Computing
 - Today's Quantum Computers
- Research on Quantum Computing @ JQub
 - Performance, Stability, and Reliability
 - Domain-specific Quantum Computing
- Messages to Send

Messages

- Research directions are NOT independent but entangled
 - e.g., model compression from Classical ML to Quantum ML
- CS/CpE students CAN significantly contribute to Quantum Computing
- How to Take First step? Online Tools and Tutorials!



Section Section 1 Section

Junction of Quantum-Classical Computer-Aided Design Lab (JQub)

2022

[News 07-08] Tutorial Scalable Design-Program-Compilation Optimizations for Quantum Algorithms at DAC [News 07-03] The Quantum Neural Network Compression has been accepted by ICCAD [arXiv]. [News 09-21] Tutorial Quantum Neural Network Compression has Deen accepted by ICCAD [arXiv]. [News 10-10] Vitual Tutorial QuantumFlow+VACSEN at ESWEEK

Quirk visible simulator

https://algassert.com/quirk

Our Contribution: VACSEN Noisy QC

https://vacsensystem.github.io/

Dr. Weiwen Jiang, JQub, ECE, GMU

Our Contribution:
QuantumFlow Tutorial

https://jqub.ece.gmu.edu/categories/QF/

28 | George Mason University

Acknowledge

Academia Students and Collaborators

National Lab

Sponsors:

OAC-2311949: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices

OAC-2320957: CyberTraining: Pilot: Quantum Research Workforce Development on End-to-End Quantum Systems Integration

Reference

- [1] Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang, Weiwen Jiang, Quantum Neural Network Compression, In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2022.
- [2] Zhirui Hu, Youzuo Lin, Qiang Guan, Weiwen Jiang, Battle Against Fluctuating Quantum Noise: Compression-Aided Framework to Enable Robust Quantum Neural Network, *In Proceedings of Design Automation Conference (DAC)*, 2023.
- [3] W. Jiang, J. Xiong, and Y. Shi, A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, *Nature Communications*, 12, 579, 2021.
- [4] Z. Wang, Z. Liang, S. Zhou, C. Ding, J. Xiong, Y. Shi, W. Jiang, Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs, *IEEE/ACM International Conference On Computer-Aided Design (ICCAD)*, 2021.
- [5] Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, W. Jiang, Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow, *IEEE/ACM International Conference On Computer-Aided Design (ICCAD)*, 2021.
- [6] W. Jiang, J. Xiong, and Y. Shi, When Machine Learning Meets Quantum Computers: A Case Study, in Proc. of Asia and South Pacific Design Automation Conference (ASP-DAC), 2021.
- [7] Zhiding Liang, Hanrui Wang, Jinglei Cheng, Yongshan Ding, Hang Ren, Zhengqi Gao, Zhirui Hu, Duane S. Boning, Xuehai Qian, Song Han, Weiwen Jiang, Yiyu Shi, Variational Quantum Pulse Learning, In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 556-565. IEEE, 2022.
- [8] Shaolun Ruan, Yong Wang, Weiwen Jiang, Ying Mao, Qiang Guan, VACSEN: A Visualization Approach for Noise Awareness in Quantum Computing, *IEEE Transactions on Visualization and Computer Graphics* (*VIS*), 2022.
- [9] Shaolun Ruan, Ribo Yuan, Yong Wang, Yanna Lin, Ying Mao, Weiwen Jiang, Zhepeng Wang, Wei Xu, Qiang Guan, Venus: A geometrical representation for quantum state visualization, *EuroVis20*, 2023.
- [10] Hanrui Wang, Zhiding Liang, Jiaqi Gu, Zirui Li, Yongshan Ding, Weiwen Jiang, Yiyu Shi, David Z Pan, Frederic T Chong, Song Han, TorchQuantum Case Study for Robust Quantum Circuits, *IEEE/ACM International Conference On Computer-Aided Design (ICCAD)*, 2022.

Reference

[11] W Jiang, Y Lin, QuGeo: An End-to-end Quantum Learning Framework for Geoscience--A Case Study on Full-Waveform Inversion, Accepted by DAC 2024.

[12] Z Hu, R Wolle, M Tian, Q Guan, T Humble, W Jiang, <u>Toward Consistent High-fidelity Quantum Learning on Unstable Devices via Efficient In-situ Calibration</u>, *QuantumWEEK 2023* (Best Paper Award)

[13] J Li, Z Wang, Z Hu, A Li, W Jiang, A novel spatial-temporal variational quantum circuit to enable deep learning on nisq devices, *QuantumWEEK 2023*

[14] J Li, Q Guan, D Tao, W Jiang, Carbon Emissions of Quantum Circuit Simulation: More than You Would Think, *IGSC 2023* [15] Z Wang, J Li, Z Hu, B Gage, E Iwasawa, W Jiang, QuMoS: A Framework for Preserving Security of Quantum Machine Learning Model, *QuantumWEEK* 2023

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000