

Towards Quantum Learning Democratization — Start from Building a Quantum Neural Network Design Stack

Zhepeng Wang, Zhiding Liang, Yiyu Shi, Weiwen Jiang JQub @ Mason | SCL @ Notre Dame

07/11/2022

What is Classical AI Democratization & What is the Challenge?

"It's here to collaborate, to augment, to <u>enhance human lives</u> and productivity and make everybody's life better. And related to that, is to **democratize A.I.** in a way that everybody gets benefit. Not just a few, or a selected group." Fei-Fei Li, 2017

Medical AI Scenario

AR/VR in Surgery

Medical Diagnosis

COVID CT Segmentation

Let Doctors Design Neural Networks?

AI Can Perform Medical Tasks

Dr. Weiwen Jiang, ECE, GMU

Progress of Classical AI Democratization

Google's Initial Contributions

(Neural Architecture Search)

Given: Dataset

Objective: • Automated search for NN (w/o human)

- Maximize accuracy on the given dataset
- Output: A neural network architecture

[ref] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." *ICLR 2017*

Talk by JQub@Mason

Dr. Weiwen Jiang

Our Contributions

(Network-Accelerator Co-Design)

Given: (1) Dataset; (2) Target hardware, e.g., FPGA.

Objective: •

- Automated search for NN and HW design
 - Maximize accuracy on the given dataset
 - Maximize hardware efficiency

Output:

A pair of neural network and hardware design

[ref] Jiang, Weiwen, et al. "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search." *DAC 2019.* (BEST PAPER NOMINATION)

[ref] Jiang, Weiwen, et al. "Hardware/software co-exploration of neural architectures", TCAD 2020 (BEST PAPER AWARD)

Co-Design Stack of Neural "Architectures"

- What is the best Neural Network Architecture for FPGAs
- Model optimization (pruning and quantization)?

		Network exploration	NAS (Google)
/	Co-Design Framework	Network compression	Deep Comp (Stanford)
	(e.g., Our FNAS)	Programming library	DNNBuilder (UIUC)
		Hardware accelerator	DNN on FPGA (UCLA)

- Mapping and scheduling?
 - What is the best FPGA Architecture for neural networks

Outline

- Background
- Perspective: Co-Design --- from Classical to Quantum
- Built Design Stack from JQub
 - Quantum Neuron with Quantum Advantage: Quantum Flow
 - Quantum Neural Network Exploration: QF-Mixer
 - Quantum Pluse: VQP
 - Quantum Neural Network Compression: CompVQC
 - Quantum NN Library: QFNN
- Conclusion

Medical AI Scenario: (Input size exponentially grows from Radiology to Pathology Imaging)

Radiology Imaging

Radiology Modality	Avg. Size (MB)
CT Scan	153.4
MRI	98.6
X-ray angiography	157.5
Ultrasound	69.2
Breast imaging	38.8

Pathology Imaging

Biopsy Type	Compressed Size(MB)/Study	Original Size (<mark>GB</mark>)
Dermatopathology	1,392 (20x compression)	27
Head and neck	1,965 (20x compression)	38
Hematopathology	40,300 (40x compression)	1574
Neuropathology	1,872 (20x compression)	37
Thoracic pathology	3,240 (20x compression)	63

[ref] Lauro, Gonzalo Romero, et al. "Digital pathology consultations—a new era in digital imaging, challenges and practical applications." *Journal of digital imaging* 26.4 (2013). Talk by JQub@Mason Dr. Weiwen Jiang, ECE, GMU 7 | George Mason University

Impossible in Classical But Possible in Quantum Computing

The maximum qubits that supercomputers can simulate for arbitrary circuits is less than 47 qubits.

- (1) <u>Summit</u> w/ 2.8 PB memory for **47 qubits**;
- (2) Sierra w/ 1.38 PB memory for 46 qubits;
- (3) <u>Sunway TaihuLight</u> w/ 1.31 PB memory for 46 qubits; (4) <u>Theta</u> w/ 0.8 PB memory for 45 qubits.

[ref] Wu, Xin-Chuan, et al. "Full-state quantum circuit simulation by using data compression." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2019.

Our Works: Co-Design of Neural Networks and Quantum Circuit

Outline

- Background
- Perspective: Co-Design --- fror
- Built Design Stack from JQub
 - Quantum Neuron with Quantum Advantage: Quantum Flow
 - Quantum Neural Network Exploration: QF-Mixer
 - Quantum Pluse: VQP
 - Quantum Neural Network Compression: CompVQC
 - Quantum NN Library: QFNN
- Conclusion

	Network exploration	QF-Mixer
Co-Design Framework	Network compression	CompVQC
uantumFlow	Programming library	QFNN
	Device-level design	QPluse

Quantum Neuron: QuantumFlow

A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage

Published at Nature Communications 2021

Presenter: Weiwen Jiang

Talk by JQub@Mason

Dr. Weiwen Jiang, ECE, GMU

Classical Bit vs. Quantum Bit

Classical Bit

- 2 basic states 0, 1 (OFF or ON)
- Mutually exclusive

X = 0 or 1Classical Bit

 $|\psi\rangle = |0\rangle$ and $|1\rangle$

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

0

Bloch Sphere

Qubit

 $\frac{\ket{0}+\ket{1}}{\sqrt{2}}$

Quantum Bit (Qubit)

- 2 basic states $|0\rangle$, $|1\rangle$ (ket 0, ket 1)
- Uses <u>superposition</u> of both states with "quantum" effect store information.
- Thus, it represents both $|0\rangle$ and $|1\rangle$ at the same time.

Multiple-Qubits System

2 Classical Bits 00 or 01 or 10 or 11 **n bits for 1 value** $x \in [0, 2^n - 1]$

2 Qubits

 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

n bits for 2^n values $a_0, a_1, a_2, \cdots a_n$ Qubits: q_0, q_1 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$ $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$ $= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

$$|q_{0},q_{1}\rangle = |q_{0}\rangle \otimes |q_{1}\rangle = \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} \otimes \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix}$$
$$= \begin{pmatrix} a_{0} \times \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} \\ a_{1} \times \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_{0}b_{0} \\ a_{0}b_{1} \\ a_{1}b_{0} \\ a_{1}b_{1} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{pmatrix}$$

Dr. Weiwen Jiang, ECE, GMU

Computation: Logic Gates vs. Quantum Logic Gates

Computation: Logic Gates vs. Quantum Logic Gates

General U Gates

Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

$$\mathbf{U}_{3}(\theta,\phi,\lambda) = \begin{pmatrix} \cos(\theta/2) & -e^{i\lambda}\sin(\theta/2) \\ e^{i\phi}\sin(\theta/2) & e^{i(\lambda+\phi)}\cos(\theta/2) \end{pmatrix}$$

$$\mathbf{U}_{3} |\mathbf{0}\rangle = \begin{pmatrix} \cos(\theta/2) \\ e^{i\phi} \sin(\theta/2) \end{pmatrix} = \cos(\theta/2) |\mathbf{0}\rangle + \mathbf{e}^{i\phi} \sin(\theta/2) |\mathbf{1}\rangle$$

Two Paths of Quantum Machine Learning: Path 1 --- VQC

 $|0\rangle = |0\rangle = |0\rangle$

[ref] Sen, P., Bhatia, A.S., Bhangu, K.S. and Elbeltagi, A., 2022. Variational quantum classifiers through the lens of the Hessian. Plos one, 17(1), p.e0262346.

Pros:

• Easy to implement

Cons:

- On intermediate-scale quantum devices,
- no works show that **performance** of QML can beat classical ML, so far.
- Have no <u>non-linear</u> in the network.
- Incur heavy overhead for non-linearity

Dr. Weiwen Jiang, ECE, GMU

17 | George Mason University

Linear

Two Paths of Quantum Machine Learning: Path 2 --- Q Accelerator

Pros:

Same Performance as Classical ML

Questions:

- How to design?
- Advantage?

QuantumFlow Answered Two Fundamental Questions Fundamental questions:

• Can we use quantum gates to **correctly implement** neural functions?

• How to design quantum circuit to achieve quantum advantage?

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing:

Can we reduce complexity to

O(ploylogN), say $O(log^2N)$?

Neural Network Accelerator Design from Classical to Quantum Computing

Hands-On: QuantumFlow

A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage

Published at Nature Communications 2021

Presenter: Zhepeng Wang

Dr. Weiwen Jiang, ECE, GMU

$PreP + U_P + U_N + M + PostP$: Data Pre-Processing

- Given: (1) 28×28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)
- **Do:** (1) downsampling from 28×28 to $2^Q = 16 = 4 \times 4$; (2) converting data to be the state vector in a unitary matrix
- **Output:** A unitary matrix, $M_{16 \times 16}$

ten 1: Downsamnling	0.0039	0.2118	0.2941	0.0275
	 0.0039	0.2784	0.5961	0.0667
	 0.0863	0.3176	0.5216	0.0588
rom 28 × 28 to 4× 4	0.1137	0.3608	0.1725	0.0039

0.2941	0.0275
0.5961	0.0667
0.5216	0.0588
0.1725	0.0039
	0.2941 0.5961 0.5216 0.1725

Step 2: Formulate Unitary Matrix

Applying SVD method (See Listing 1 in ASP-DAC SS Paper) Unitary matrix: $M_{16 \times 16}$

[SS] W. Jiang, et al. When Machine Learning Meets Quantum Computers: A Case Study, ASP-DAC'21

$PreP + U_P + U_N + M + PostP$ ---- Data Encoding / Quantum State Preparation

- **Given:** The unitary matrix provided by *PreP*, $M_{16\times 16}$
- **Do:** Quantum-State-Preparation, encoding data to qubits
- Verification: Check the amplitude of states are consistent with the data in the unitary matrix, $M_{16\times16}$

Let's use a 2-qubit system as an example to encode a matrix $M_{4\times 4}$

Hands-On Tutorial (1) PreP + U_P

$PreP + U_P + U_N + M + PostP --- Neural Computation$

- **Given:** (1) A circuit with encoded input data *x*; (2) the trained binary weights *w* for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on the qubits, such that it performs $\frac{(x*w)^2}{\|x\|}$.
- **Verification:** Whether the output data of quantum circuit and the output computed using torch on classical computer are the same.

Target:
$$O = \left[\frac{\sum_{i}(x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$$

Step 1: $m_i = x_i \times w_i$

- Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1
- Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.) Step 2: $n = \left[\frac{\sum_i (m_i)}{\sqrt{\|x\|}}\right]$ Step 3: $O = n^2$

 $w_0 = 1$ $[W_0]$ a_0 Step 1: $m_i = x_i \times w_i$ $w_1 = 1$ $w_2 = 1$ a_1 W_1 x =w = W_{2} a_2 EX: 4 input data on 2 qubits $w_3 = -1$ $m_3 = -1 \times a_3 = -a_3$ $\begin{bmatrix} a_3 \end{bmatrix}$ *W*₃

Step 1:
$$m_i = x_i \times w_i$$

EX: 4 input data on 2 qubits

Flip the sign of $|11\rangle$

Flip the sign of $|01\rangle$

Flip the sign of $|10\rangle$

Dr. Weiwen Jiang, ECE, GMU

EX: 4 input data on 2 qubits

Output

Step 2: $n = \left[\frac{\sum_{i}(m_i)}{\sqrt{\|x\|}}\right]$

$\sum_{i} (m_i) / \sqrt{\ x\ }$	00>
Do not care 1	01>
Do not care 2	10>
Do not care 3	11>

U

Input

Х

Dr. Weiwen Jiang, ECE, GMU

28 | George Mason University

Step 3: $0 = n^2$ $X^{\otimes 2}$ CCX Input (000) 000 Do not care $\sum (m_i) / \sqrt{\|x\|}$ |000> Do not care 3 EX: 4 input data on 2 qubits |001> 0 |001> 0 |001> Х 0 Ζ Η q_0 input |010> Do not care **|010** Do not care 2 |010> Do not care 1 Ζ Η Х q_1 |011> 0 |011> 0 |011> 0 |100> Do not care 100 Do not care 1 |100> Do not care 2 0 Х |101> 0 0 |101> |101> 0 input |110> 0 |110> $\sum (m_i) / \sqrt{\|x\|}$ |110> Do not care 3 |111> $\sum (m_i) / \sqrt{\|x\|}$ |111> |111> 0 0

Output

$$P\{O = |1\rangle\} = P\{|001\rangle\} + P\{|011\rangle\} + P\{|101\rangle\} + P\{|111\rangle\} = \left[\frac{\sum_{i}(m_{i})}{\sqrt{\|x\|}}\right]$$

Talk by JQub@Mason

Dr. Weiwen Jiang, ECE, GMU

Hands-On Tutorial (2) $PreP + U_P + U_N$

QuantumFlow Answered Two Fundamental Questions Fundamental questions:

• Can we use quantum gates to **correctly implement** neural functions?

• How to design quantum circuit to achieve quantum advantage?

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing:

Can we reduce complexity to

O(ploylogN), say $O(log^2N)$?

QuantumFlow Results

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. *npj Quantum Information*, 5(1), pp.1-8.

Quantum Neural Network: QF-Mixer

Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

Published at IEEE/ACM International Conference on Computer-Aided Design 2021

Presenter: Zhepeng Wang

Dr. Weiwen Jiang, ECE, GMU

Challenges

Different operators/neurons in classical computing can be connected seamlessly.

Connect different quantum neurons may incur high overhead; will not be seamless.

Dr. Weiwen Jiang, ECE, GMU

QF-MixNN

VQC and QuantumFlow are complementary to each other and can be mixed.

QF-MixNN Achieves the Best Accuracy on MNIST

TABLE I EVALUATION OF QNNS WITH DIFFERENT NEURAL ARCHITECTURE						
Architecture MNIST-2 [†] MNIST-3 [†] MNIST-4 [‡] MNIST-5 [‡]						
VQC (V	×R1)	97.91%	90.09%	93.45%	91.35%	52.77%
Quantum	Flow	95.63%	91.42%	94.26%	89.53%	69.92%
	V+U	97.36%	92.77%	94.41%	93.85%	88.46%
QF-MixNN	V+U+P	87.45%	82.9%	92.44%	91.56%	90.62%
	V+P	91.72%	76.93%	88.43%	85.02%	49.57%
Input resolutions: † 4 × 4; ‡ 8 × 8; $^{\$}$ 16 × 16;						

- Non-linearity is important. A linear decision boundary is not sufficient for complicated tasks.
- Real-valued weight is helpful. It increases the representation capability of QNN significantly.

- Achieve highest accuracy for full set of MNIST dataset
- QF-MixNN takes the advantage of both VQC-based QNN and QF-Net from Quantumflow.

Quantum Pulse: VQP

Variational Quantum Pulse Learning

Published at IEEE Quantum Week 2022

Presenter: Zhiding Liang

Why pulse learning?

- Variational quantum circuit (VQC) shows the potential on ML tasks on explore search space due to the property.
- Compared to the VQC, VQP has more parameters that learnable.
- Compared to the VQC, VQP avoid partial of noise from decoherence error.
- Compared to the VQC, VQP directly change the physical parameters on physical

pulses. Thus, gain the flexible on the control.

Why pulse learning?

Optimization Framework? Initial Sampling (Pulses) Pulses Learning Loop X_{initial} New Trail with **Objective Function** X_{new} f(x) (inference on Simulator or Task and Data real quantum machine) Optimizer VQP learning Performance Environment Optimizer

Real QC/ Fake Machine Deployment

Amplitude List

Optimized Amplitudes Group

Satisfy Requirements

No

Yes

NOTRE DAME

Why pulse learning?

Form of CX gate	Noise simulator (Quito)	Time Duration Noise simulator (Belem)	Noise simulator (Jakarta)	Advantage in specific gate
$CRX(\pi)$ gate	26832.0dt	32016.0dt	26832.0dt	
CX gate	25136.0dt	27728.0dt	25136.0dt	

Model	# of Cata	Т	ime Duration
Widder	Model # of Gate		Noise simulator (Belem)
VQP	9	40816.0dt	45168.0dt
VQC*	12	58896.0dt	58768.0dt
VQP_transpiled	11	32368.0dt	32816.0dt
VQC*_transpiled	17	53008.0dt	46192.0dt

Advantage in general circuit

Experiment Result

Model	Accuracy Noise simulator (Belem)	ibmq_jakarta
VQC learning 20	0.57	0.58
VQP learning 20	0.6	0.69
VQC learning 100	0.61	0.59
VQP learning 100	0.63	0.64
VQC learning MNIST 20	0.6	0.56
VQP learning MNIST 20	0.66	0.62
VQC learning MNIST 100	0.57	0.62
VQP learning MNIST 100	0.61	0.71

Achieves higher accuracy under same condition

Model	# of Gates	Accuracy
VQC_base	9	0.62
VQP	9	0.71
VQC*	12	0.68

VQC with more gates has
similar performance in
terms of accuracy

Challenge for Pulse Learning

- 1. Non-gradient-based optimizer has randomness when parameter in high dimensional space.
- 2. Qiskit pulse simulator is not efficient, e.g., need around 3 mins to finish a 9-gate circuit.

Model	# of Gates	Accuracy	Model	# of Gates	Accuracy
VQC_base	9	0.62	VQP	9	0.71
VQP	9	0.71	VQC with gradient	9	0.73
VQC*	12	0.68	VQC* with gradient	12	0.77

This table shows the VQC with gradientbased algorithm and VQP with Bayesian optimization framework, both for same machine learning task.

Solution and future task:

- 1. Improvement on optimization process.
- 2. Developing an efficient and differentiable pulse simulator.

Gradient based algorithm shows advantages than BO based.

CompVQC

Quantum Neural Network Compression

https://arxiv.org/pdf/2207.01578.pdf

Presenter: Weiwen Jiang

Talk by JQub@Mason

Dr. Weiwen Jiang, ECE, GMU

45 | George Mason University

Compression: From Classical To Quantum

Pruning and Quantization in Classical ML

Pruning and Quantization in Quantum ML

Pruning: Not only 0 can be pruned, but also 2pi, 4pi, etc.
Quantization: Different quantization level may have different cost

Quantum Compression is Compilation Aware

CompVQC Framework

Results

 CompVQC can maintain high accuracy with <1% accuracy loss

 CompVQC can reduce circuit length by 2.5X

Quantum NN Library: QFNN

QuantumFlow Neural Network (QFNN) API

UEEE IEEE ON CONTUM

IEEE International Conference on Quantum Computing and Engineering — QCE21

Released at IEEE International Conference on Quantum Computing and Engineering

Presenter: Weiwen Jiang

(So htt

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI) https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

Open-Source Quantum NN Library: QFNN

Qiskit + OPyTorch + QuantumFlow

QFNN 0.1.17 documentation » QuantumFlow Neural Network (QFNN) API.				
Table of Contents	QuantumFlow Neural Network (QFNN) API.			
QuantumFlow Neural Network (QFNN) API. Indices and tables	Indices and tables			
This Page Show Source Quick search	 Index Module Index Search Page 			
Go	1			

https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html

https://github.com/jqub/qfnn

Example 1: QuantumFlow

Sub module of qfnn.qf_circ

• **Given:** (1) Number of input neural $2^{\mathcal{N}}$; (2) number of output neuron \mathcal{M} ;

(3) input \mathcal{I} ; (4) weights \mathcal{W} ; (5) an empty quantum circuit \mathcal{C}

- **Do:** (1) Encode inputs to the circuit; (2) embed weights to the circuit; (3) do accumulation and quadratic function
- **Output:** (1) Quantum circuit \mathcal{C} with \mathcal{M} output qubits

```
С
#create circuit
                                                      \mathcal{N} for 2^{\mathcal{N}} data
                                                                           \mathcal{M}
circuit = QuantumCircuit()
#init circuit, which is corresponding to a neuron with 4 gubits and 2 outputs
u layer = U LYR Circ(4, 2)
#create qubits to be invovled
inps = u layer.add input qubits(circuit)
aux =u layer.add aux(circuit)
u layer out qubits = u layer.add out qubits(circuit)
```

W #add u-layer to your circuit u layer.forward(circuit,binarize(weight 1),inps,u layer out qubits,quantum matrix,aux)

```
Algorithm 4: QF-Map: weight mapping algorithm
 Input: (1) An integer R \in (0, 2^{k-1}]; (2) number of qbits k;
 Output: A set of applied gate G
 void recursive(G,R,k){
      if (R < 2^{k-2}){
           recursive (G, R, k-1); // Case 1 in the third step
      else if (R == 2^{k-1}){
          G.append(PG_{2k-1}); // Case 2 in the third step
           return:
      }else
           G.append(PG_{2k-1});
           recursive (G, 2^{k-1} - R, k-1); // Case 3 in the third step
// Entry of weight mapping algorithm
 set main(R,k){
      Initialize empty set G;
      recursive(G,R,k);
      return G
```

#show your circuit

С circuit.draw('text',fold=300)

Example 2: Variational Quantum Circuits

Sub module of

qfnn.qf_circ

- Given: (1) Number of input qubits \mathcal{N} ; (2) weights \mathcal{W} ; (3) a quantum circuit \mathcal{C} with input data having been encoded
- **Do:** (1) embed weights $\mathcal W$ to the circuit;
- **Output:** (1) Quantum circuit \mathcal{C} with measurements

Example 3: An artificial neuron implemented on an actual quantum processor

Sub module of

qfnn.qf_circ

• **Given:** (1) Number of input qubits \mathcal{N} ; (2) number of output neuron \mathcal{M} ;

(3) a quantum circuit ${\mathcal C}$ with input data having been encoded

- **Do:** (1) embed weights to the circuit; (2) do accumulation and quadratic function
- **Output:** (1) Quantum circuit \mathcal{C} with \mathcal{M} output qubits

circuit.draw('text', fold=300)

Outline

- Background
- Perspective: Co-Design --- from Classical to Quantum
- Built Design Stack
 - Quantum Neuron with Quantum Advantage: Quantum Flow
 - Quantum NN Library: QFNN
 - Quantum Neural Network: QF-Mixer
 - Quantum Pluse: VQP

Conclusion

Conclusion & Resources

- How to build up quantum circuit for neural networks from scratch
- Co-design stack can build a better quantum neural network accelerator
- Along with the development of quantum computers and quantum neural networks, we will see real-world applications in the NISQ Era

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI) https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

<u>https://jqub.ece.gmu.edu</u> (JQub Website)
<u>https://jqub.ece.gmu.edu/categories/QF</u> (News and **slides**)
https://jqub.ece.gmu.edu/categories/QF

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://arxiv.org/pdf/2012.10360.pdf https://arxiv.org/pdf/2109.03806.pdf https://arxiv.org/pdf/2109.03430.pdf

Tal, J, J, DMason

Dr. Weiwen Jiang, ECE, GMU

56 | George Mason University

Thank you!

Dr. Weiwen Jiang, ECE, GMU

57 | George Mason University

Goal: From AI Democratization to Quantum AI Democratization

Our Previous Contributions

(Network-Accelerator Co-Design)

- Given: (1) Dataset; (2) Target Hardware, e.g., FPGA.
- Objective: Automated search for NN and HW design
 - Maximize accuracy on the given dataset
 - Maximize hardware efficiency
- Output: A pair of neural network and hardware design

[ref] Jiang, Weiwen, et al. "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search." *DAC 2019*.

Quantum AI Democratization

Talk by JQub@Mason

Dr. Weiwen Jiang, ECE, GMU

Progress of Classical AI Democratization

Google's Initial Contributions

(Neural Architecture Search)

- NAS with RL (ICLR 2017)
- NAS with Para. Sharing (ICML 2018)
- NASNet (CVPR 2018)
- MNasNet (CVPR 2019)

Our Contributions

(Network-Accelerator Co-Design)

- FNAS (DAC 2019, Best Paper Nomination, BPN)
- FPGA & Network (CODES+ISSS 2019, BPN)
- NANDS for NoC (ASP-DAC 2020, BPN)
- FNAS+ (IEEE TCAD 2021 Best Paper Award)
- First place of 31st ACM SIGDA UBooth@DAC'21

PI: "Software Defined FPGA Hardware and Co-Exploration for Real-Time Applications", NSF IUCRC ASIC Center, 100K, (Co-PI: Yiran Chen @ Duke) Co-PI: "RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19", NSF IIS, 98K, (PI: Prof. Yiyu Shi)

Co-PI: "Hardware/Software Co-Exploration of Multi-Modal Neural Architectures Targeting AR/VR Glasses", Facebook Research Funding, **75K**, (PI: Prof. Yiyu Shi)

Talk by JQub@Mason

FF Council on Flectron

. . .

Dr. Weiwen Jiang, ECE, GMU

U

QuantumFlow: Taking NN Property to Design QC

 $[0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$

$$(v_o; v_{x1}; v_{x2}; ...; v_{xn}) \times \begin{pmatrix} 1\\ 0\\ ...\\ 0 \end{pmatrix} = (v_0)$$

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

S1 -> **S2**:

SO -> S1:

 $W = [+1, -1, +1, +1, -1, -1, +1, +1, +1, -1, -1, +1, +1, -1, +1]^{T}$ |0000> |0001> |0010> |0011> |0100> |0111> |0110> |0111> |1000> |1011> |1010> |1011> |1100> |1111> |1100> |1111> $S2 = [0, -0.59, 0, 0, -0, -0.07, 0, 0, 0, -0.66, -0.33, 0.33, 0, -0, 0, 0]^{T}$

Implementation 1 (example in Quirk):

Implementation 2:

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

QuantumFlow: Quantum Neuron Optimization

Property from NN

- The **weight order** is not necessary to be fixed, which can be adjusted if the order of inputs are adjusted accordingly
- **Benefit:** No need to require the positions of sign flip are exactly the same with the weights; instead, only need the number of signs are the same.

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$ ori + - + + fin - + + - $S1' = [0, 0.59, 0, 0.33, 0.33, 0.07, 0, 0, 0.66, 0, 0, 0, 0, 0, 0]^{T}$

QuantumFlow: Quantum Neuron Optimization

Algorithm 4: QF-Map: weight mapping algorithm
Input: (1) An integer $R \in (0, 2^{k-1}]$; (2) number of qbits k;
Output: A set of applied gate G
void recursive(G,R,k){
if $(R < 2^{k-2})$ {
recursive $(G, R, k-1)$; // Case 1 in the third step
}
else if $(R = 2^{k-1})$ {
$G.append(PG_{2^{k-1}})$; // Case 2 in the third step
return;
}else{
$G.append(PG_{2^{k-1}});$
recursive $(G, 2^{k-1} - R, k-1)$; // Case 3 in the third step
}
}
// Entry of weight mapping algorithm
set main (R,k) {
Initialize empty set G;
recursive (G,R,k) ;
return G
}

Used gates and Costs

Gates	Cost
Z	1
CZ	1
C ² Z	3
C ³ Z	5
C ⁴ Z	6
C ^k Z	2k-1

Worst case: all gates