

Enabling Deeper Quantum Compiler Optimization
at High Level

Yufei Ding, Gushu Li, Anbang Wu, Yuan Xie
07/11/2022

The Quantum Revolution

1900
Quantum

Mechanics

1947
Transistor

1956
MOSFET

1958
Integrated

Circuit

1st Quantum
Revolution

2nd Quantum Revolution: the power of
quantum is not fully exploited

1980

Classical
Computer

The Quantum Revolution

1980
Quantum
Computer

2nd Quantum
Revolution

1994
Cryptography

2019
Supremacy Now

Practical
Quantum

Computing

Quantum Computing System Stacks

Application

Simulation

Cryptography

Optimization

Machine Learning

Technology Stacks

Quantum Computing System Stacks

Technology Stacks

Device

Application

Superconducting Ion Trap

Photonics Quantum Dot

Quantum Computing System Stacks

Technology Stacks

Application

Architecture

Compiler

Language

ENIAC, the first electronic general
purpose digital computer, 1945

Device

Hardware vs Software

• IBM benchmarking results

IBM Q Montreal

Contribution Breakdown

Hardware, QV=16 Software, QV=128

[IBM Quantum]4 : 3

Quantum system research
extends the computation
capability!

And both software and
hardware are important

Quantum Volume (QV): the size of Hilbert space
that a quantum processor can explore reliably

Background

• Quantum software – quantum circuit

Execution Order

logical qubits

single-qubit gate

two-qubit gate, CNOT

measurementQuantum
teleportation

program

Background

• Quantum software – program state
State vector:

1-qubit, 𝜓 = 𝑎! 0 + 𝑎" 1 , [𝑎!, 𝑎"]

3-qubit, 𝜓 = 𝑎!!! 000 + 𝑎!!" 001 +⋯+ 𝑎""" 111
[𝑎!!!, … , 𝑎"""]

n-qubit, state vector [𝑎!, …, 𝑎#!$"] of size 2^n

Background

• Quantum software – program semantics

Gate matrices:

1-qubit, H = "
#
1 1
1 −1

2-qubit, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

n-qubit, matrices of size 2^n by 2^n

Background

• Quantum software – program semantics

Gate matrices:

1-qubit, H = "
#
1 1
1 −1

2-qubit, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

n-qubit, matrices of size 2^n by 2^n
I!⊗H"⊗ I#

I!⊗CNOT#,&

Background

• Quantum hardware – the superconducting architecture

Q3

Q2

Q1

Q4

Q0

resonator – connect physical qubits

physical qubits

IBM’s 5-qubit
superconducting

quantum chip

Background

• Quantum hardware – the superconducting architecture

IBM’s 5-qubit
superconducting

quantum chip
Coupling graph – limited

qubit connection

CNOT Q0, Q1

CNOT gates only
allowed on the
connected edges

Q1

Q4

Q3

Q0

Q2

CNOT Q1, Q3

Mismatch

• When we write a quantum program, we may not know the underlying
architecture

Coupling graph – limited
qubit connection

Ideal device –
complete graph

Some gates may
not be executable

Q1

Q4

Q3

Q0

Q2Q1Q4

Q3

Q0

Q2

Qubit Mapping

• An Example

4-qubit chip 4-qubit circuit

q1
q2
q3
q4

(Q1)
(Q 2)
(Q 3)
(Q 4)

Some CNOTs
are executable

Q1

Q4Q3

Q2q1 q2

q3 q4

But some CNOTs
are not

Qubit Mapping

• An Example

q1
q2
q3
q4

(Q 1)
(Q 2)
(Q 3)
(Q 4)

(Q 2)
(Q 1)
(Q 3)
(Q 4)

Insert additional gate SWAP:
exchange the mapping

4-qubit chip 4-qubit circuit

Q1

Q4Q3

Q2q2 q1

q3 q4

q1
q2

= 1 SWAP = 3 CNOT
Each additional SWAP leads to more noise

Quantum Compiler Optimization

• Find some circuit identities
• Select the best one according to some metrics (e.g., # gate, # depth)

and constraints (e.g., sparse connection on hardware)

Gate: 6 + 2; Depth: 6 Gate: 10 + 2; Depth: 12

Challenge

• How can we find large-scale quantum circuit identities efficiently?

v Calculate their matrix representations and check the equivalence?
* Scalability issue: Matrix size of 2^n x 2^n and/or huge combinatorial search
space.

v Limit our compiler optimization scope: peephole optimization, local swap
insertions in qubit mapping, etc.
* Missing large-scope optimizations.

?=

Paulihedral: A Generalized Block-Wise Compiler Optimization
Framework for Quantum Simulation Kernels

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding,
Yuan Xie

ASPLOS 2022

Opportunities at High-Level

• More abstract compact form? Yes
• Simulation is widely used in quantum algorithm design

a

b c

1 2

3

𝐻 =
1
2 𝑍4𝑍5 − 𝐼 +

2
2 𝑍4𝑍6 − 𝐼 +

3
2 (𝑍5𝑍6 − 𝐼)

Graph Cut

𝐻 = −∑𝐽78𝑍7𝑍8 − 𝜇∑ℎ8𝑍8Simulation

And many more

Quantum Simulation Kernel

• A widely-used subroutine
exp(𝑖𝐻𝑡)

𝐻 = ∑!𝑤!𝑃!, 𝑃! is a Pauli string, 𝑤! ∈ ℝ is weight

…… …………exp(𝑖𝑤9𝑃9) exp(𝑖𝑤:𝑃:)exp(𝑖𝑤;𝑃;)

High-Level IR: Pauli IR

v Pauli string P is just Kronecker product of 1-qubit Pauli matrices (I, X, Y, Z).

X = Y =I = Z =

(P, w) Basic unit of our IR: a pair of Pauli string P and a real number w.

A size-n P can concisely express a 2n x 2n matrix
• Examples of 4-qubit Pauli string: X3Y2Z1I0 , Z3Z2Z1Z0 , X3Y2Y1X0
• Active qubits for a Pauli string: qubits with a non-I Pauli matrix.

High-Level IR: Pauli IR

(P, w) denotes a 2n x 2n unitary gate exp 𝑖𝑤𝑃 .

exp(𝑖
𝜋
4

ZX…Y)Example: (ZX…Y,
!
"

)

Pauli IR (kernel) Exponential form
Circuit form

Universal in terms of unitary gates

Compile to Pauli IR

• Great news: It is already there, at least for many quantum algorithm
design.

• (e.g., QAOA, VQE, and many other quantum simulation algorithms like
UCCSD).

QAQA Ansatz on graph Max-Cut

𝐻 ==
'

𝑤'𝑃'

From Pauli IR to Gates

• Very flexible compilation/synthesis
exp(𝑖𝑤𝐼4𝑍!𝑍"𝑍#𝑍$) v if z-basis parity on q3, q2, q1, q0 = 0, apply a global phase

exp(𝑖𝑤); otherwise, apply exp(−𝑖𝑤).

q0àq1àq2àq3

CNOT tree
for parity check

It thus could generate many great circuit identities with the same (P, w).

q0àq3

q2àq1

à

Example: Qubit Mapping

• How can Paulihedral change the mapping/SWAP insertion?

Conventional Compilation

• Find SWAP in gate sequence
exp(𝑖𝑤𝑍"𝑍#𝑍$𝑍%)

28

CNOT q0, q1
CNOT q1, q2
CNOT q2, q3

q0 q2

q3R

q0

q2
q1

q3
SWAP q1, …
CNOT q0, q1
CNOT q1, q2
SWAP q3, …
SWAP q3, …
CNOT q2, q3

q1

Paulihedral Compilation

• Leverage high-level information
exp(𝑖𝑤𝑍"𝑍#𝑍$𝑍%)

q0

q1

q2

q3

exp(𝑖𝑤𝑍"𝑍#𝑍$𝑍%)

SWAP q2, …
CNOT q0, q3
CNOT q2, q1
CNOT q1, q3

Find a tree embedding, then
generate the CNOT tree

R

q0

q2
q1

q3

More Gate Cancellation

• Find global gate cancellation among Pauli strings
• Circuit synthesis for exp(𝑖𝑍@𝑍;𝐼9)・exp(𝑖𝑍@𝑍;𝑍9)

v Naïve synthesis for each separate kernel
v No gate cancellation.

v Common subtree-centric gate synthesis
for large-scope gate cancellation.

v CNOTs cancel out with each other.

More active qubits overlapping between nearby Pauli IR kernelsàmore gate
cancellation.

Moreover

Please see paper for details

different backends

error mitigation

large-scope scheduling

symmetry preserving
[Livio, 2012] [Gui et al. 2019]

[Linke et al. 2017]

parameter sharing
[McArdle et al. 2020]

[Hastings et al. 2015]
more gate cancellation

Evaluation

• Benchmarks: molecule/Ising/Heisenberg/random Hamiltonian,
UCCSD/QAOA graph ansatz

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Gate count Circuit Depth Gate count Circuit Depth Compilation
time

t|ket> Paulihedral

Connectivity constrained
(superconducting)

Fully connected (ion trap,
fault-tolerant)

53.1% 53.3%
33.6%

65.0%

<5%

A Synthesis Framework for Stitching Surface Code with
Superconducting Quantum Devices

Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi,
Yufei Ding, Yuan Xie

ISCA 2022

QEC Program: Surface Code

• Surface code: one of the best QEC in terms of error correction
capabilities (up to about 1% error).

Circuits can be perfectly
mapped to the hardware
(coupling graph) on the left
side.

• 2-D lattice qubit structure: long-range entanglement to protect the logic qubit
from local noises.

Data qubits (blue): encode the correct subspace for logical operations.
Syndrome qubit (red): ensure data qubits are working collaboratively by
checking their X, Z parity.

Mismatch between Surface Code and Sparse
Architectures

Some recent study designed new QEC codes
tailored for these sparse architecture.Surface Code

Google

v Can the “mismatch” be mitigated by compiler optimization?

IBM Rigetti

What is Special about QEC program?

1) 4-degree qubit: each syndrome qubit (red) measures the parity of 4 data qubits (blue).

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2) Fixed data qubit Layout: moving data qubits would invalidate those high-level
logical operations.
3) Stabilizer measurement scheduling: zigzag (instead of clockwise) gives
maximum parallelism.

Our QEC Compiler

• How to resolve the mismatch problem from a compiler’s perspective? If
so, to what extent?

Bridge tree to encode a “logic” syndrome
qubit, and use it to replace a 4-dgree node.
[L. Lao et. al. PRA2020]

1. How are data qubits allocated?
2. How to find !small and local! bridge trees?
3. How to schedule stabilizer measurement circuits?

v Three key submodules to resolve the surface code mismatch problem:

Our QEC Compiler

• We build the first automated framework for compiling surface code to
sparse quantum devices with a modularized design.

Ø The synthesized distance-3 surface code by our framework

(a) Heavy Hexagon (b) Heavy Square

We could work with different architectures + missing links/qubits.

Performance of Our QEC Compiler

• The error threshold of the compiled surface code is comparable or
even better than IBM’s manually designed QEC codes tailored for the
sparse architectures.

More results in our paper.

Our Vision for Future QEC Development

• General QEC design and mapping could be formulated as a compiler
problem.

Hardware

Metrics:
Error Threshold?
Qubit Utilization?
Fabrication Yield?

….

Automatic Mapping
and Optimization

FrameworkDifferent stabilizer codes,
subsystem codes,

and their hybrid concatenation,
etc.
…

A compiler framework to automate the designs of hardware-aware QEC codes +
its associated error decoder!!!

Q & A

• Thank you!

