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Flow of Quantum Computing
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Gate Model of Quantum Computation: Quantum Gates
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▪ Single-qubit gate

▪ “Bitflip” gate 𝑋: 
𝛼
𝛽 ↦

𝛽
𝛼

i.e., 
0 1
1 0

▪ Hadamard gate 𝐻 =
1

2

1 1
1 −1

▪ Phase shift gate 𝑅𝜙 =
1 0
0 𝑒𝑖𝜙

▪ 𝑃 ≡ 𝑅𝜋

2
, 𝑇 ≡ 𝑅𝜋

4

▪ Qiskit 𝑈3 gate 𝑈3 𝜃, 𝜙, λ =
cos(𝜃/2) −𝑒𝑖𝜆sin(𝜃/2)

𝑒𝑖𝜙sin(𝜃/2) 𝑒𝑖(𝜙+𝜆)cos(𝜃/2)

▪ Two-qubit gate

▪ Controlled-not gate 𝐶𝑋: 
𝛼
𝛽
𝛾
𝛿

↦

𝛼
𝛽
𝛿
𝛾

▪ All gates are unitary: AA+ = I

▪ The Solovay-Kitaev Theorem: the gate set {𝐻, 𝑃, 𝑇, 𝐶𝑋} is universal for quantum computing! 

[Nielsen&Chuang, QCQI]



Qubit Mapping and Scheduling (Layout Synthesis) for QC (LSQC)

3/9/22
7

Input Circuit of Adder

𝒒𝟎

𝒒𝟏

𝒒𝟐

𝒒𝟑

CX on a pair of non-adjacent qubits! 

Insert SWAP gate to change the mapping

SWAP

CX on a pair of adjacent qubits, OK.

Coupling Graph of IBM QX 2

# Input quantum program
x q[0];
x q[1];
h q[3];
cx q[2], q[3];
t q[0];
… 

† means Hermitian conjugate, which is straightforward once we have the original gate implementation. 



Layout Synthesis for Quantum Computing (LSQC)

▪ Input: quantum circuit/program,

coupling graph

▪Output: spacetime coordinates of all

gates, including inserted SWAPs

▪Objectives: depth, additional SWAP

count, fidelity, …

▪Constraints:

• Execute all gates

• Respect dependencies

3/9/22
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Space Coordinates

Time Coordinates

SWAP Insertion

Input Circuit of Adder Coupling Graph of IBM QX 2



Outline

▪ Introduction

▪Gap analysis for quantum compilation

▪Optimal layout synthesis for quantum computing (OLSQ)

▪OLSQ with Gate Absorption
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Previous Works on Layout Synthesis for Quantum Computing

▪ Layer-by-layer: 

• [Maslov et al., TCAD’08], [Zulehner et al., DATE’18]: lookahead search guided by heuristic cost function

• [Shafaei et al., ASPDAC’14]: optimize the ‘total distance’

▪ Gate-by-gate: 

• [Siraichi et al., CGO’18]: heuristic search for min #SWAPs

• [Wille et al., DAC’19]: optimize #SWAPs

▪ Use dependency: 

• [Murali et al., ISCA’19]: optimize fidelity upper bound

• [Li et al., ASPLOS’19]: bi-directional search with cost function concerning both #SWAPs and depth

▪ Industry tools: Quilc, Qiskit, t|ket>, Cirq, …

3/9/22
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Are they good enough? 



Similar Questions Have Been Asked Before for VLSI Designs 
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E.g. Circuit placement (an NP-hard problem)



Construction of Placement Examples with Known Optimal (PEKO) 
Wirelength [Chang et al., TCAD’04]

▪ Up to 2 million placeable objects

• Initial WL gap: 1.6x – 2.5x (2003)

▪ Multiple EE Times articles coverage, e.g.
• Placement tools criticized for hampering IC designs [Feb’03] 

▪ Many downloads from our website
• Cadence, IBM, Intel, Magma, Mentor Graphics, Synopsys, …

• CMU, MIT, SUNY, UCB, UCSB, UCSD, UIC, UMichgan, UWaterloo, …

▪ Optimality gap on PEKO was narrowed down to ~20% as of 

2007 (from 60% - 150%)

▪ Improvement on real circuits as well
• 30+% improvement by mPL placer 2003-06

3/9/22
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http://cadlab.cs.ucla.edu/~pubbench

http://cadlab.cs.ucla.edu/~pubbench


Quantum Mapping Examples with Known Optimal (QUEKO)

QUEKO: depth and gate count optimal 

benchmarks tailored to arbitrary 

devices for LSQC

• Input: device graph, target depth, gate 

density

• Backbone construction: grow a 

dependency chain

• Sprinkling: match the gate density profile

• Scrambling: challenge the LSQC tools

• Output: OpenQASM file

3/9/22
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Evaluating Existing LSQC Tools with QUEKO

▪Devices: Google Sycamore, Rigetti Aspen-

4, IBM Q Tokyo,  and IBM Q Rochester

▪Circuits: QUEKO benchmarks
• Depth: 
❖ 5-45 as near-term feasible, 

❖ 100-900 as scalability study

• Gate density: profile of Toffoli gate and quantum 

supremacy experiment [Arute et al., Nature’19]

▪Tools: 

• Cirq (Google)

• Qiskit (IBM)                    

• tket (Cambridge QC, now Quantinuum) 

• [Zulehner et al., DATE’18]
14



QUEKO Results: Near-Term Feasible
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QUEKO Results: Scalability Study
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Outline

▪ Introduction

▪Gap analysis for quantum compilation

▪Optimal layout synthesis for quantum computing (OLSQ)

▪OLSQ with Gate Absorption
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▪ [Wille et al., DAC’19]: 𝐿2 two-qubit gates, 𝑀 logical qubits, 𝑁 physical qubits

• Mapping 𝑥𝑝𝑞
𝑙 = 1 iff. logical qubit 𝑞 is mapped to physical qubit 𝑝 before gate 𝑔𝑙

′

• 2𝐿2𝑀𝑁 search space for mapping

• Permutation variables 𝑦Π
𝑙 = 1 iff. before gate 𝑔𝑙

′, qubits have a permutation Π

• 𝐿2𝑁! permutation variables. Needs to pre-compute min cost of each Π.

• The example of adder below: >1,500 variables

Large Solution Space of LSQC

3/9/22
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Mapping of logical qubit 𝑞0
𝑥2,0
1 = 1, 𝑥𝑖,0

1 = 0 𝑖 ≠ 2,

…
𝑥3,0
4 = 1, 𝑥𝑖,0

4 = 0 𝑖 ≠ 3,

𝑥3,0
5 = 1, 𝑥𝑖,0

5 = 0 𝑖 ≠ 3,

𝑥2,0
6 = 1, 𝑥𝑖,0

6 = 0 𝑖 ≠ 2,

…

The SWAP insertion 𝑦Π
4 and 𝑦Π

6 = 1
where Π: 0 ↦ 0, 1 ↦ 1, 2 ↦ 3, 3 ↦ 2

For all other Π’s and 𝑙’s, 𝑦Π
𝑙 = 0

𝒒𝟎

𝑝0

𝑝4

𝑝3

𝑝2
𝑝1

𝒒𝟑

𝒒𝟐

𝒒𝟏
𝒒𝟎

Input Circuit of AdderResult of [Wille et al., DAC’19]



▪Variables in OLSQ 

• Spacetime Coordinates (𝑥𝑙 , 𝑡𝑙) for every gate 𝑔𝑙
❖If 𝑔𝑙 is a single-qubit gate, 𝑥𝑙 is a physical qubit; if 𝑔𝑙 is a two-qubit gate, 𝑥𝑙 is an edge

• Mapping 𝜋𝑞
𝑡 : at time 𝑡, logical qubit 𝑞 is mapped to the physical qubit 𝜋𝑞

𝑡

• Use of SWAP 𝜎𝑒
𝑡: 𝜎𝑒

𝑡 = 1 iff. there is a SWAP on edge 𝑒 and its last time step is 𝑡

• More efficient encoding of search space*: 𝑁𝑀𝑇

Our Approach: OLSQ (Optimal Layout Synthesis for Quantum Computing)

3/9/22
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Mapping of logical qubit 𝑞0
𝜋0
0 = 3,
𝜋0
1 = 3,
…

𝜋0
8 = 2,
…

𝜋0
14 = 2

The SWAP insertion 𝜎(𝑝2,𝑝3)
7 = 1

For all other 𝑒’s and 𝑡’s:  𝜎𝑒
𝑡 = 0

𝑝0

𝑝4

𝑝3

𝑝2
𝑝1

Result of OLSQ

𝒒𝟎𝒒𝟎

𝒒𝟏

*𝑁 physical qubits,

𝑀 logical qubits, 

𝑇 time steps



OLSQ: Constraints

▪ Validity

• Valid mapping targets: ∀𝑡, 𝑞 𝜋𝑞
𝑡 ∈ 𝑃 (all nodes in the coupling graph G)

• Valid time coordinates: ∀𝑙 0 ≤ 𝑡𝑙 < 𝑇 (increase 𝑇 if no solution)

• Valid space coordinates: if 𝑔𝑙 is a single-qubit gate, 𝑥𝑙 ∈ 𝑃 ; if a two-qubit gate, 𝑥𝑙 ∈ 𝐸 (all edges in G)

▪ Dependencies: if 𝑔𝑙 depends on 𝑔𝑙′ , then 𝑡𝑙 > 𝑡𝑙′

▪ Injective mapping: ∀𝑡, 𝑞, 𝑞′ 𝑞′ ≠ 𝑞 ⇒ 𝜋𝑞
𝑡 ≠ 𝜋𝑞′

𝑡

3/9/22
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𝑔8 depends on 𝑔4 ⇒ 𝑡8 > 𝑡4

Input Circuit of Adder

▪ 𝑂(𝑁𝑇)

• 𝑂(𝑁𝑇)

• 𝑂(𝐿)

• 𝑂(𝐿)

▪ 𝑂(𝑁𝑇)

▪ 𝑂(𝑁2𝑇)



Spacetime coordinates for 𝑔0 is 

𝑡0 = 0 and 𝑥0 = 𝑝3

OLSQ: Constraints

▪ Mapping implies spacetime coordinates

• 𝑡0 = 0 ∧ 𝑥0= 𝑝3 ⇒ 𝜋0
0 = 𝑝3

3/9/22

Mapping of logical qubit 𝑞0
𝜋0
0 = 3 𝑔0 acts on 𝑞0, and 𝑞0 is mapped to 𝑝3 at time 0

21

▪ 𝑂(𝑁𝑇𝐿)



OLSQ: Constraints

▪ Legal SWAPs:

• Initial SWAP conditions

❖0 ≤ 𝑡 < 3, ∀𝑒 𝜎𝑒
𝑡 = 0

• No overlaps between SWAPs

❖ 𝜎(𝑝2,𝑝3)
7 = 1 ⇒ 𝜎(𝑝2,𝑝0)

7 = 0

• No overlaps between SWAPs and original gates

❖ 𝑡10 = 8 ∧ 𝑥10 = 𝑝1, 𝑝2 ∧ 𝑝1, 𝑝2 ∩ 𝑝0, 𝑝1 ≠ ∅ ⇒ 𝜎(𝑝0,𝑝1)
8 = 0

3/9/22
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𝑝0

𝑝4

𝑝3

𝑝2
𝑝1

▪ 𝑂(𝑁𝑇𝐿)

• 𝑂 𝑁

• 𝑂(𝑁𝑇)

• 𝑂(𝑁𝑇𝐿)



OLSQ: Constraints

▪ Mapping transformed by SWAPs

• 𝜋0
0 = 𝑝3 ∧ ∑

𝑒: 𝑝3∈𝑒
𝜎𝑒
0 = 0 ⇒ 𝜋0

1 = 𝑝3

• 𝜋0
7 = 𝑝3 ∧ 𝜎(𝑝2,𝑝3)

7 = 1 ⇒ 𝜋0
8 = 𝑝2

3/9/22

There are no SWAPs ending at 

time 0 on any edge connecting 𝑝3.

Mapping of 𝑞0 at time 1 is the 

same with that at time 0.

There is a SWAP on (𝑝2, 𝑝3) finishing at time 7.

Mapping of 𝑞0 changes at time 8.

23

▪ 𝑂(𝑁2𝑇)

• 𝑂(𝑁2𝑇)

• 𝑂(𝑁2𝑇)

𝑝0

𝑝4

𝑝3

𝑝2
𝑝1



▪Depth = max 𝑡𝑙

▪#SWAP = ∑𝜎𝑒
𝑡,  or/and

▪Fidelity = ς𝑞 𝑓m 𝜋𝑞
𝑇 ⋅ ς𝑙1

𝑓1(𝑥𝑙1) ⋅ ς𝑙2
𝑓2(𝑥𝑙2) ⋅ ς𝑒,𝑡 𝑓𝑆 𝑒 𝜎𝑒

𝑡

• 𝑓m, 𝑓1, 𝑓2, and 𝑓𝑆 are measurement, single-qubit gate, two-qubit gate, and SWAP fidelity.

• 𝜋𝑞
𝑇 is the final mapping. 𝑙1 goes over all single-qubit gates; 𝑙2 goes over all two-qubit gates. 

OLSQ Optimization Objectives

3/9/22
24Result of OLSQ



Solved Using SMT (Satisfiability Modulo Theories)

▪ SAT (Boolean Satisfiability): given a conjunctive normal form, whether there is an assignment 

such that it is true. E.g., 

• 𝒂 ∧ ഥ𝒂 ∨ 𝒃 ∧ 𝒄

• S𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 𝒂 = 𝒃 = 𝒄 = 𝐓𝐫𝐮𝐞

▪ SMT generalizes SAT to more complex formulas involving real numbers, integers, lists, 

arrays, bit-vectors, etc.  E.g.

• 𝒂 ≔ 𝒙+ 𝒚 < 𝟑, 𝒃 ≔ 𝒙 < 𝟒 − 𝒚, 𝒄 ≔ 𝒙 > 𝟎. 

• Then, 𝒙 = 𝒚 = 𝟏 makes the model satisfiable.

▪ SMT is very expressive, widely used in compilation, programming language, formal 

verification, etc.

▪ There are efficient SMT solvers, such as Z3 (and we can further customize for OLSQ)
25



Summary of Constraints for OLSQ

3/9/22
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Constraints OLSQ [Wille et al., DAC’19]

Validity 𝑂(𝑁𝑇)

Injective Mapping 𝑂(𝑁2𝑇)

Dependency 𝑂(𝑁𝑇)

Mapping constrains Spacetime Coordinates 𝑂(𝑁𝑇𝐿)

No Overlap with Other SWAPs 𝑂(𝑁𝑇)

No Overlap with Original Gates 𝑂(𝑁𝑇𝐿)

Mapping transformed by SWAPs 𝑂(𝑁2𝑇)

In total 𝑂(𝑁𝑇𝐿) 𝑂(𝐿2𝑀𝑁!)



Side-effect of gate-by-gate processing in [Wille et al., DAC’19]

Key Advantages of OLSQ

3/9/22
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Dependencies enforced by OLSQ

▪Efficiency: 𝑶(𝑵𝑻) vars & 𝑶(𝑵𝑻𝑳) constraints versus 𝑶(𝑳𝟐𝑵!) & 𝑶(𝑳𝟐𝑴𝑵!)

▪Complexity result: a polynomial certificate → quantum LS is in NP

▪Optimality: independent from input gate order



Input Circuit of Adder

Transition-Based OLSQ

▪Motivation: many mapping variables are redundant in the lack of SWAPs.

▪Solution: gate blocks + transitions. 

▪Variables: mapping, spacetime, SWAP for each block instead for each time step

• 2 blocks versus 14 time steps

▪After SWAP insertion, we can use ASAP (as soon as possible) scheduling

3/9/22
28SWAP on (𝑝2, 𝑝3)

Gate block 0 Gate block 1



Constraints TB-OLSQ Revision

Validity Change bounds to #blocks

Injective Mapping No change

Dependency Change > to ≥

Mapping constrains Spacetime Coordinates No change 

No Overlap with Other SWAPs No change

No Overlap with Original Gates Not required anymore

Mapping transformed by SWAPs No change

Constraints for TB-OLSQ

3/9/22
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Summary of Constraints for TB-OLSQ

3/9/22
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Constraints OLSQ [Wille et al., DAC’19] TB-OLSQ

Validity 𝑂(𝑁𝑇) 𝑂(𝑁𝐵)

Injective Mapping 𝑂(𝑁2𝑇) 𝑂(𝑁2𝐵)

Dependency 𝑂(𝑁𝑇) 𝑂(𝑁𝐵)

Mapping constrains Spacetime Coordinates 𝑂(𝑁𝑇𝐿) 𝑂(𝑁𝐵𝐿)

No Overlap with Other SWAPs 𝑂(𝑁𝑇) 𝑂(𝑁𝐵)

No Overlap with Original Gates 𝑂(𝑁𝑇𝐿) 𝑂(𝑁𝐵𝐿)

Mapping transformed by SWAPs 𝑂(𝑁2𝑇) 𝑂(𝑁2𝐵)

In total 𝑂(𝑁𝑇𝐿) 𝑂(𝐿2𝑀𝑁!) 𝑂(𝑁𝐵𝐿)



▪Comparison with OLSQ >400x speedup (geomean)

▪ A more recent work [Zhang et al., ASPLOS’21] uses A* search with an admissible heuristic, which runs faster 

with depth-optimal solutions (but cannot optimize other objectives, e.g. fidelity).

Benchmarks
TB-OLSQ optimizing SWAP 

vs. tket

TB-OLSQ optimizing fidelity 

vs. TriQ*

Small circuits to 

verify optimality

(reduction geomean)

76%
1.07X

Larger arithmetic 

circuits
57% 1.02X

QUEKO circuits 100% 2.10X

TB-OLSQ Evaluation 

3/9/22
31* TriQ is from [Murali et al., ISCA’19]



▪Aiming optimization with binary variables

▪Quantize the problem by changing variables to qubits.

▪Example: MAX-CUT problem on 𝑮 = (𝑽, 𝑬)

▪Assign ±𝟏 variables 𝒛𝒊 to vertices

▪MAX-CUT = Maximize ∑ 𝒗𝒋,𝒗𝒌 ∈𝑬

𝟏−𝒛𝒋𝒛𝒌

𝟐

▪𝒛𝒋𝒛𝒌 has a corresponding two-qubit gate, ZZ-Phase.

Quantum Approximate Optimization Algorithm (QAOA)

3/9/22
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±1

±1

±1

±1

±1



The ZZ-Phase Gate for Each Edge

▪

𝑒−𝑖𝛾 0 0 0
0 𝑒𝑖𝛾 0 0
0 0 𝑒𝑖𝛾 0
0 0 0 𝑒−𝑖𝛾

▪Commutable, i.e., AB=BA, since diagonal

3/9/22
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QAOA-OLSQ

▪Observation: some 

‘dependencies’ are not real, 

according to commutation. 

3/9/22
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▪Solution: make a distinction between dependency and collision

▪Result: 70% depth reduction, 54% SWAP reduction compared to tket.  

Dependency

Collision



Outline

▪ Introduction

▪Gap analysis for quantum compilation

▪Optimal layout synthesis for quantum computing (OLSQ)

▪OLSQ with Gate Absorption
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Programmable Single-Qubit Gate -> Programmable Two-Qubit Gate

▪A programmable single-qubit gate can be configured to be any matrix in 𝑈(2)

𝑉 𝜃, 𝜙, λ =
cos(𝜃/2) −𝑒𝑖𝜆sin(𝜃/2)

𝑒𝑖𝜙sin(𝜃/2) 𝑒𝑖(𝜙+𝜆)cos(𝜃/2)

▪Native two-qubit gate: CX

▪A programmable two-qubit gate can be configured to any matrix in 𝑈(4)

▪KAK Decomposition [Vatan&Williams, PRA’04]: any 𝑈(4) to 3 CX’s and some 𝑈(2)

3/9/22
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U (4)
V

V

V

V V

V

V

V



Quantum Programs as Lists of Programmable Two-Qubit Gates

▪Driving applications

• Chemistry simulation [Kivlichan et al., PRL’18]

• Quantum Approximate Optimization Algorithm 

(QAOA) [Farhi et al., arXiv’14, Harrigan et al., 

NatPhys’21]

• Quantum neural networks (QCNN) [Cong et al., 

NatPhys’19]

▪…

3/9/22
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V(π/4,
-π/2, 
-π/2)

V(2.38,
π/2, 
π/4)

V(2.38,
-3.12, 
1.6)

V(π/8,
0, 
-π/2)

V(1.05,
0.648, 
-2.56)

V(π/2,
-3π/8, 
π/2)

V(π/2,
-1.94, 
-π)

V(π/2, π/2, 
-3π/4)

fSim(
𝜋

4
,
𝜋

4
) can be decomposed as



▪Dependency: relative order of the gates

▪Gate commutation:

Take Advantage of Gate Absorption and Commutation 

▪Gate absorption

3/9/22
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V

V

V

V

V V

VV

V’

V

V

V

V

V VV’

VV

U (4)
V’

U(4)

U(4)

fSim

fSim fSim

fSim

U(4)

U(4)



Two-Qubit Gate Absorption

3/9/22
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fSim fSwap
V

V

V

V

V V

VV

Formulation [Tan&Cong, ICCAD’21]:

• Use of absorbed SWAP 𝛼𝑒
𝑡 = 1 iff. there is an absorbed 

SWAP on edge 𝑒 at time 𝑡

• Mapping transformed by both absorbed and explicit SWAPs 

𝛼𝑒
𝑡 and 𝜎𝑒

𝑡



QAOA Results with Gate Absorption (Depth and # Swap Gates) 

▪Similar QAOA instances of size 8 to 14 like in [Harrigan et al., NatPhys’21]

▪SABRE [Li et al., ASPLOS’19]: leading heuristic mapper, recently adopted in Qiskit

▪OLSQ-GA (considers commutation) reduced depth up to 80%, absorbed all the SWAPs
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#SWAP
Size of QAOA (There are no gray bars since 

OLSQ-GA absorbed all the SWAPs)

Size of QAOA
Depth

QAOA-OLSQ



Multiple 

iteration 

fidelity 

QAOA Results with Gate Absorption (Fidelity)

▪Fidelity estimated with slightly optimistic parameters 𝑇0 = 50 and 𝑓𝑈(4) = 99%

▪OLSQ-GA improves fidelity by up to 49% for 1 iteration, 636% for 5 iterations.
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Single 

iteration 

fidelity 
Size of QAOA

QAOA-OLSQ



Concluding Remarks

▪ There are significant advances in quantum computing (QC) device technology

▪ There is a great need for better design automation or compilation tools for QC

• As measured by the QUEKO circuits

▪ Optimization objectives for NISQ applications

• Circuit depth (decoherence time)

• Overall fidelity

• Scalability

▪ OLSQ provides a framework for optimal solution for layout synthesis

▪ Further opportunities to combine layout synthesis with logic synthesis

▪ A lot of more opportunities for compilation/design automation for QC on novel architectures
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