
Tools to Be Used in this Tutorial

Google CoLab

Github – Tutorial

Pytorch

Qiskit

https://jqub.ece.gmu.edu/categories/QFV/

Tutorial on VACSEN & QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

1 | George Mason University

Tutorial on QuantumFlow+VACSEN: A Visualization System for Quantum Neural Networks on Noisy Quantum Devices

Weiwen Jiang, Qiang Guan, Yong Wang

10/09/2022

Agenda

- Session 1: Opening (08:30 08:45)
- Session 2: QuantumFlow Co-Design Framework (08:45 09:45)
- Session 3: Quantum Neural Network Compression (10:00 10:40)
- Session 4: VACSEN: A Visualization Tool for Noise in Quantum Computing (10:45 - 12:00)

Tutorial on QuantumFlow+VACSEN: A Visualization System for Quantum Neural Networks on Noisy Quantum Devices

Session 1: Opening

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

Our Goals on Quantum Learning

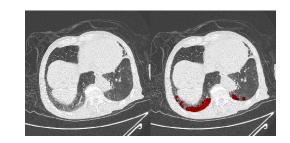
For Quantum Neural Network Researchers

 Q: What's a <u>practical</u> way to approaching to quantum advantage?
 A: Algorithm-Compiler-Device Co-Design

- For Quantum Computer Users
 - Q: How to make users be aware of <u>the status of quantum devices</u>?A: Visualization
- For Everyone
 - Q: How to enable everyone can use quantum machine learning?
 - A: Quantum learning demonization!

What is Classical AI Democratization & What is the Challenge?

"It's here to collaborate, to augment, to <u>enhance human lives</u> and productivity and make everybody's life better. And related to that, is to **democratize A.I.** in a way that everybody gets benefit. Not just a few, or a selected group." Fei-Fei Li, 2017


Medical AI Scenario

AR/VR in Surgery

Medical Diagnosis

COVID CT Segmentation

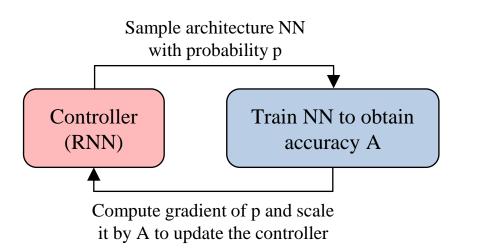
Real-Time MRI Segmentation

Let Doctors Design Neural Networks?

AI Can Perform Medical Tasks

Dr. Weiwen Jiang, ECE, GMU

Progress of Classical AI Democratization


Google's Initial Contributions

(Neural Architecture Search)

Given: Dataset

Objective: • Automated search for NN (w/o human)

- Maximize accuracy on the given dataset
- Output: A neural network architecture

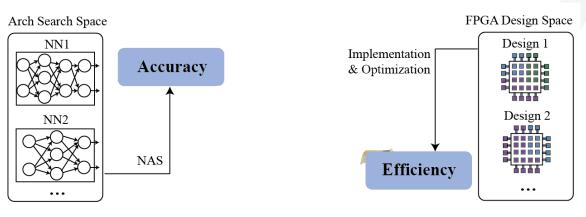
[ref] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." *ICLR 2017*

Tutorial on VACSEN & QuantumFlow

Dr. Weiwen Jiang

Our Contributions

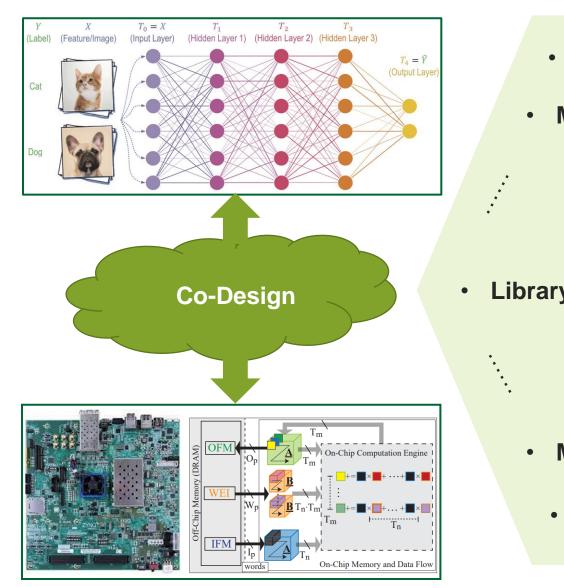
(Network-Accelerator Co-Design)


Given: (1) Dataset; (2) Target hardware, e.g., FPGA.

Objective: •

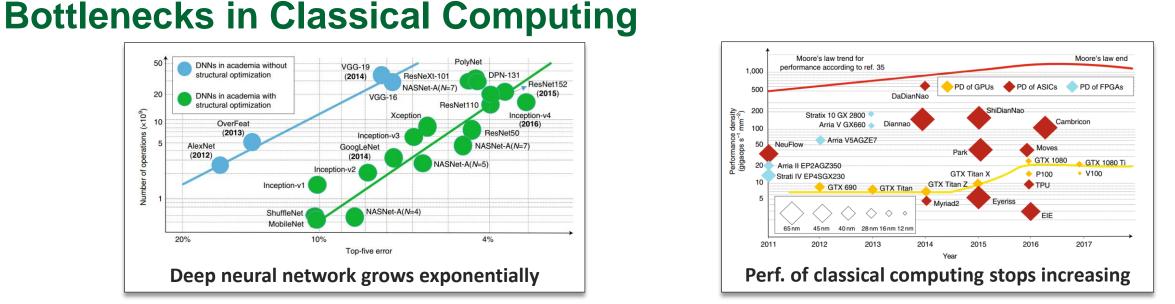
- Automated search for NN and HW design
 - Maximize accuracy on the given dataset
 - Maximize hardware efficiency

Output:


A pair of neural network and hardware design

[ref] Jiang, Weiwen, et al. "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search." *DAC 2019*. (BEST PAPER NOMINATION)

[ref] Jiang, Weiwen, et al. "Hardware/software co-exploration of neural architectures", TCAD 2020 (BEST PAPER AWARD)


Co-Design Stack of Neural "Architectures"

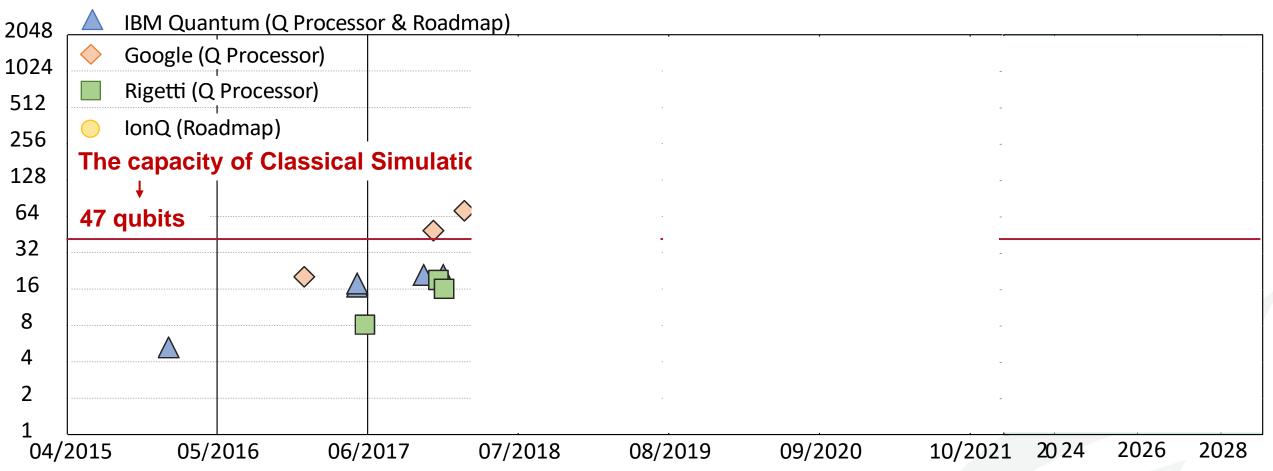
- What is the best Neural Network Architecture for FPGAs
- Model optimization (pruning and quantization)?

		Network exploration	NAS (Google)
y Co-Design Framework (e.g., Our FNAS)	Ŭ	Network compression	Deep Comp (Stanford)
		Programming library	DNNBuilder (UIUC)
		Hardware accelerator	DNN on FPGA (UCLA)

- Mapping and scheduling?
 - What is the best FPGA Architecture for neural networks

Medical AI Scenario: (Input size exponentially grows from Radiology to Pathology Imaging)

Radiology Imaging

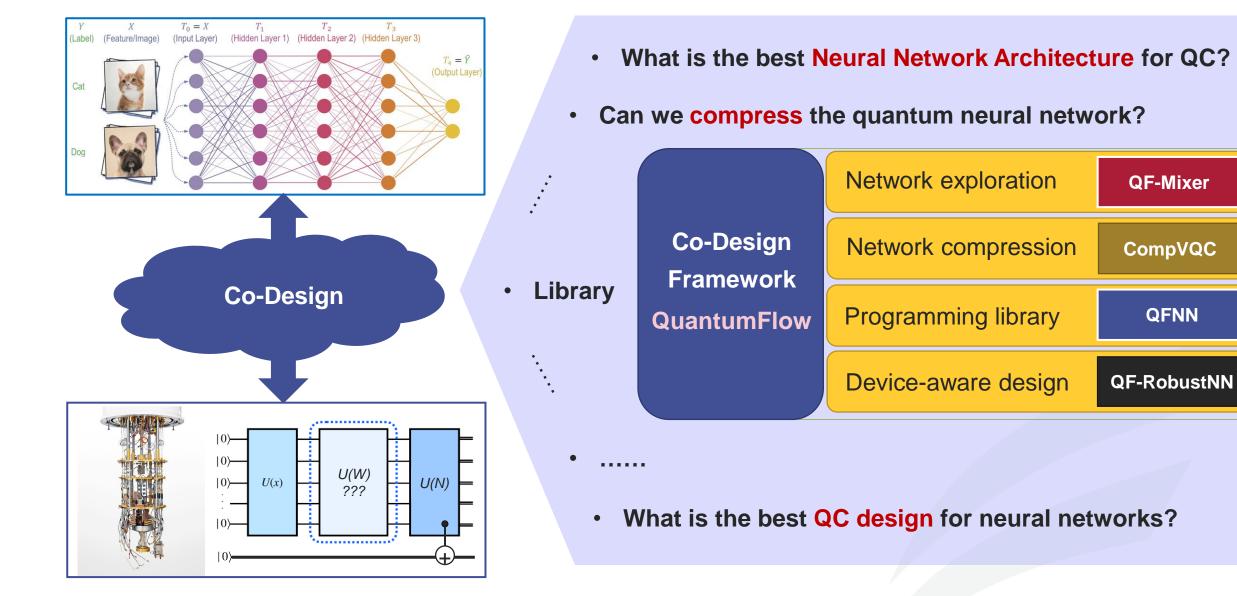

Radiology Modality	Avg. Size (MB)
CT Scan	153.4
MRI	98.6
X-ray angiography	157.5
Ultrasound	69.2
Breast imaging	38.8

Pathology Imaging

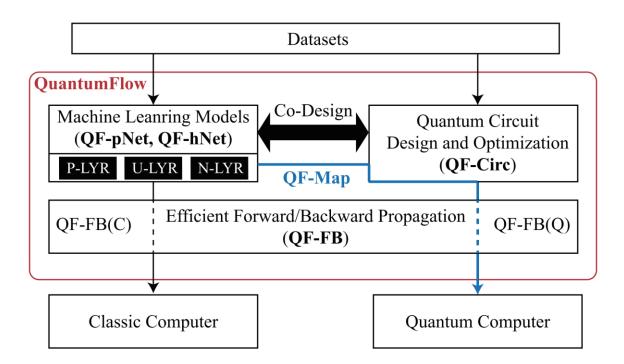
Biopsy Type	Compressed Size(MB)/Study	Original Size (<u>GB</u>)
Dermatopathology	1,392 (20x compression)	27
Head and neck	1,965 (20x compression)	38
Hematopathology	40,300 (40x compression)	1574
Neuropathology	1,872 (20x compression)	37
Thoracic pathology	3,240 (20x compression)	63

[ref] Lauro, Gonzalo Romero, et al. "Digital pathology consultations—a new era in digital imaging, challenges and practical applications." Journal of digital imaging 26.4 (2013).Tutorial on VACSEN & QuantumFlowDr. Weiwen Jiang, ECE, GMU9 | George Mason University

Impossible in Classical But Possible in Quantum Computing



The maximum qubits that supercomputers can simulate for arbitrary circuits is less than 47 qubits.


- (1) <u>Summit</u> w/ 2.8 PB memory for **47 qubits**;
- (2) Sierra w/ 1.38 PB memory for 46 qubits;
- (3) <u>Sunway TaihuLight</u> w/ 1.31 PB memory for 46 qubits; (4) <u>Theta</u> w/ 0.8 PB memory for 45 qubits.

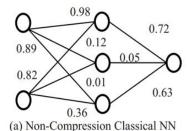
[ref] Wu, Xin-Chuan, et al. "Full-state quantum circuit simulation by using data compression." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2019.

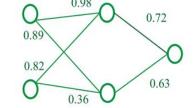
Co-Design of Neural Networks and Quantum Circuit

Session 2: QuantumFlow Co-Design Framework

https://www.nature.com/articles/s41467-020-20729-5 https://github.com/JQub/QuantumFlow_Tutorial

- Correctly implement binary neuron on quantum computers.
- Reduce complexity from O(n) in classical computers to O(polylog(n)) in quantum computers.
- On MNIST, achieve same accuracy with a cost reduction of 10.85 × over classical computers.

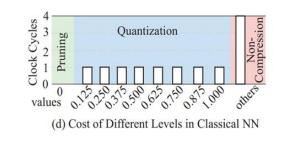

Dr. Weiwen Jiang, ECE, GMU


Session 3: Quantum Neural Network Compression

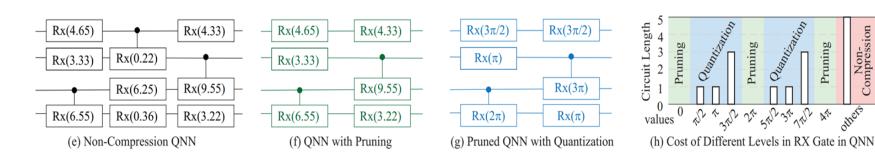
0.875

0.875

• Pruning and Quantization in Classical ML



(b) Classical NN with Pruning


0.75

1.0

Pruning and Quantization in Quantum ML

November 2, 2022

Reduction on the compiled circuit length for more than 2X with <1% accuracy loss.

Dr. Weiwen Jiang, ECE, GMU

13 | George Mason University

Session 4: VACSEN: A Visualization Tool for Noise in Quantum Computing

the premier forum for advances in visualization and visual analytics

October 16, 2022

VACSEN introduces a novel visualization technique to achieve noise-aware quantum computing, detailed comparison on the filtered compiled circuit view, and user-friendly interaction to achieve better fidelity.

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030 Tel: (703)993-1000