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Bottleneck in Applying ML for Specific Applications

o Manually Design Neural Network:
Requires expertise from different domains
Collaboration of these experts is difficult
Large human labor
Long launch time...

Computer Scientist Data Scientist
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AutoML is a Promising Solution

o Automated Design Neural Network:

~ Replace exerts by using automated optimization approaches

~ Release the labor from experts

v Short launch time
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One Network Cannot Work for All Platforms

¢ Cloud/ Server
e Unlimited Resource

* Maximizing Accuracy

 AlexNet, VGGNet, ResNet, ...

+ Mobile Phones
* Fixed Hardware
* Accuracy v.s. Latency
 MnasNet, ProxylessNAS, ...

o Hardware Accelerators (e.g., FPGA)

* Hardware Design Flexibility

e Accuracy, Latency, and Energy
* FNAS, SkyNet, EDDNet...
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Problem: Datasets/Applications, Hardware, and Neural Networks

Neural Networks

Datasets / Applications

CITYSCAPE
Wy I DATASET

Hardware Platforms
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Outline

= Background
= A Quick Overview of The Road From Manual Design to AutoML
= HW/SW Co-Exploration Framework

= Motivation
=  Framework Overview and Details

= Results

* Follow-up Works and Conclusion
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HW/SW Co-Exploration of Neural Architectures
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Motivation « Hardware-Aware NAS (Fixed HW)
* Find network N under fixed HW H
TABLE |
ON CIFAR-10 AND XILINX XC7Z015 FPGA: COMPARISONS OF  Sequential Optimization:
THREE NEURAL ARCHITECTURE AND HARDWARE DESIGN PAIRS
IN ACCURACY, THROUGHPUT, AND ENERGY EFFICIENCY (E.-E): * Find network N under fixed HW H
A) OPTIMAL ARCHITECTURE ON A FIXED HARDWARE o
IMPLEMENTATION THROUGH HARDWARE-AWARE NAS; B) THE * Optimize HW H for N
SAME ARCHITECTURE BUT WITH FURTHER FPGA OPTIMIZATION:
AND C) A JOINTLY OPTIMIZED NEURAL ARCHITECTURE AND « Co-Exploration:

FPGA IMPLEMENTATION THROUGH OUR CO-EXPLORATION. o _
« Optimize N and H in one loop

ID Approach Accuracy Throughput « 0.66% Accuracy Gain

(FPS) How to Co-Explore?
A Hardware-Aware NAS  84.53% 16.2 * 2.19X and 1.20X Throughput Gain
B Sequential Optimization 84.53% 29.7 e 227X and 1.40X Energy Efﬁciency
C Co-Exploration 85.19% 35.5 1.91

HW and Network Optimization are

Coupled with Each Other
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Framework: Optimizing Network Architecture and HW Design in One Loop

Optimization Controller

« Controller iteratively selects
solution from the search
space for evaluation

« Controller is evolved using
the evaluation results
from previous iteration.
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Framework: Optimizing Network Architecture and HW Design in One Loop

Reward(A,U) l

RNN Controller ° Controner:
Prediction Prediction Prediction

fokpsio) fk s s 5y ) Reinforcement learning
based optimizer

NAS Cell NAS Cell NAS Cell NAS Cell
(RNN Cell) r (RNN Cell) (RNN Cell) o r (RNN Cell)
Layer 1: Parameter  Layer 2: Parameter  Layer 3: Parameter Layer N: Parameter
(fp ks, .0 (o ks, . (fy kyospn (S dyp S0
------------------ i--ﬁ------------------

Search Space
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Framework: Optimizing Network Architecture and HW Design in One Loop

Controller

Hyperparameters of child network (R.R,R,.,R )

Level 1: Fast Exploration (FE)

(1) Generate pipelined FPGA configuration to satisfy the throughput
(2) Iteratively train the controller to maximize utilization of each FPGA

Evaluator

Search Space Exploration:

 Network Hyperparameters (SW)

« Partition and Assignment (HW)

RNN 2 RNN M

PAR,

PAR, PAR,

{PARJ'}-l ch,.

Pipeline Stage 1 —} Pipeline Stage 2 -} -} Pipeline Stage M

P =L}z alP ),

U =BLAST(P 0., PAR)
R, =Formula-1(U))
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Framework: Optimizing Network Architecture and HW Design in One Loop

| ----------------------------------------
I n
i Controller - Evaluator:
| .
| « Obtain Accuracy A and HW
| - .
| Utilization U
I .
|  Generate Reward with A & U
|
: RNN Reward(A,U) ¢
1] PAR, PAR, PAR, PAR,
1 Search Space T B @FJ:‘BN
: RNN Cell RNN Cell RNN Cell gIE¥
1 —— T T —
| PAR, PAR, PAR, PAR,
|
L
FE
Child Network “C” l
partition *P", assignment “a”
Level 2: Slow Exploration (SE) SE 1. Train C on the held-out dataset to obtain accuracy A
(1) Train the child network from Level 1 to obtain its accuracy 2. Obtain the average uitlization U using BLAST(C,P,a)
(2) Generate Reward in terms of accuracy and utilization 3. Compute reward based Oln Aand U
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Framework: Optimizing Network Architecture and HW Design in One Loop

Reward(A,U) l RNN Controller

Prediction Prediction Prediction

R B L AU o8y ) « Controller iteratively selects
solution from the search

NAS Cell NAS Cell NAS Cell

NAS Cell
(RNN Cell) r (RNN Cell) (RNN Cell) o r (RNN Cell) .
space for evaluation
Layer 1: Parameter  Layer 2: Parameter  Layer 3: Parameter Layer N: Parameter
(fp ks, .0 (o ks, . (fy kyospn (S dyp S0

Hyperparameters of child network l T{ R R.R R}
o Ty e My

Level 1: Fast Exploration (FE)

(1) Generate pipelined FPGA configuration to satisfy the throughput o CO N t o I I er |S ev0|ved US| ng
(2) Iteratively train the controller to maximize utilization of each FPGA .

the evaluation results
from previous iteration.

Child networks with better hardware utilizaticnnl

Level 2: Slow Exploration (SE)
(1) Train the child network from Level 1 to obtain its accuracy
(2) Generate Reward in terms of accuracy and utilization
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Results

At most 2 FPGAs At most 3 FPGAs
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Pareto Frontier between Accuracy and HW Efficiency can be

Significantly Pushed Forward
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« Designs in required model size range
« Other design points
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Results
Accuracy Accuracy - i Energy Eff.
Dataset Models Depth Parameters Pipeline Eff. FPS
(Topl) (Top5) GOPS/W
Hardware-Aware NAS 13 0.53M 84.53% - 73.27% 16.2 0.84
Sequential Optimization 13 0.53M 84.53% - 92.20% 29.7 1.36
CIFAR-10
Co-Exploration (OptHW) 10 0.29M 80.18% - 99.69 % 355 2.55
Co-Exploration (OptSW) 14 0.61M 85.19% - 92.15% 35.5 1.91
Hardware-Aware NAS 15 0.44M 68.40% 89.84% 81.07% 6.8 0.34
I Net Sequential Optimization 15 0.44M 68.40% 89.84% 86.75% 10.4 0.46
magelNe
Co-Exploration (OptHW) 17 0.54M 68.00% 89.60% 96.15% 12.1 1.01
Co-Exploration (OptSW) 15 0.48M 70.24 % 90.53% 93.89% 10.5 0.74

Co-Exploration Outperform Competitors on Different Datasets
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Design Stack Built By the Team

* HW/SW Co-Design

* Quantum Machine Learning
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Co-Design NAS Full-Stack
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Co-Design NAS Full-Stack
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Co-Design NAS Full-Stack
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Co-Design NAS Full-Stack
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Co-Design NAS Full-Stack
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Co-Design NAS Full-Stack
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Conclusion

The very first framework to conduct HW/SW co-exploration

Co-exploration can push forward Pareto frontier of accuracy vs. efficiency

Providing fundamentals of the co-design stack

We even apply the co-design philosophy to quantum machine learning, the

Initial work was published at Nature Communications
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