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Course Information

3 |  George Mason University

Instructor Dr. Weiwen Jiang

E-Mail wjiang8@gmu.edu

Phone (703)993-5083

Lecture Time Monday 19:20 - 22:00

Location Room 1002, Music/Theater Building

Office Hour Monday 16:30 - 17:30

Office Room 3247, Nguyen Engineering Building

Zoom http://go.gmu.edu/zoom4weiwen

Backup Course Zoom https://go.gmu.edu/ece618 (Need Permission First) 

http://go.gmu.edu/zoom4weiwen
https://go.gmu.edu/ece618
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About Me.
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• Background

• Researcher at University of Pittsburgh (2017-2019)

• Postdoc at University of Notre Dame (2019-2021)

• George Mason University (2021 - present)

• Research Interests

• HW/SW Co-Design

• Quantum Machine Learning

• Contacts:

• wjiang8@gmu.edu

• Nguyen Engineering Building, Room3247

• (703)993-5083

• https://jqub.ece.gmu.edu/

Dr. Weiwen Jiang

mailto:wjiang8@gmu.edu
https://jqub.ece.gmu.edu/
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Teaching Assistant
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Yi Sheng (Ph.D. Candidate)

ysheng2@gmu.edu

https://jqub.ece.gmu.edu/yi/

Office Hours: TBD

mailto:ysheng2@gmu.edu
https://jqub.ece.gmu.edu/yi/
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Course Description

Covers the hardware design principles to deploy different
machine learning algorithms. The emphasis is on understanding
the fundamentals of machine learning and hardware
architectures and determine plausible methods to bridge them.

Topics include precision scaling, in-memory computing,
hyperdimensional computing, architectural modifications, GPUs
and vector architectures, quantum computing as well as recent
hardware programming tools such as Xilinx AI Vitis, Xilinx
HLS, and IBM Qiskit.

6 |  George Mason University
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Recommend Prerequisite
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• ECE 554: Machine Learning for Embedded Systems

• Good C programming

• Especially required for FPGA-related project

• Familiar with Python and PyTorch
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Course Resources
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• Blackboard:

• Assignments will be posted and submitted here!

• Online discussion, shared documents, announcements.

• Do NOT upload codes in discussion.

• Course Website:

• https://jqub.ece.gmu.edu/2022/01/01/HA4ML/

• Course information (TA time, location, zoom, etc.)

• Slides, readings, and documents will be posted here!

https://jqub.ece.gmu.edu/2022/01/01/HA4ML/
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Grading Policy
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● Midterm Exam 10%

● Final Exam 20%

● Research Paper Presentation 20%

● Assignments and Labs 20%

● Project 30%
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You Have Been Warned. 
Zero Tolerance!
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• No matter vaccinated or not, face mask is required 

in class

• Request to a Zoom access for a few classes if needed
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You Have Been Warned. 
Zero Tolerance!
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• Lecture content and materials should NOT go online 

without explicit permission

• No plagiarism!

The most common sense of way interpreting no plagiarism: 

You need to DO your work.  
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Tools for lab
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Google Colab

Xilinx High-Level Synthesis

IBM Qiskit

https://colab.research.google.com/
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2021-1.html
https://www.ibm.com/quantum-computing/
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What Software to Be Accelerated? --- MLP/CNN

17 |  George Mason University

Supervised Learning

Inference/Execution

Given: Unseen data test dataset
A learned function 𝒇

𝒇( ) = 3Do: 

Training

Given: Labeled data as training dataset

(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 training data, 𝑦𝑖: label 

𝑥𝑖 = 𝑦𝑖 = 3

Output: A learned function 𝒇 from X to Y

𝒇: 𝑥 ↦ 𝑦

Example: Classification
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What Software to Be Accelerated? --- MLP/CNN
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• Local receptive fields

• Shared weights

• Pooling (subsampling)

Cat?

Dog?
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What Software to Be Accelerated? --- RNN

19 |  George Mason University

Inference/Execution

Given: Unseen data test dataset
A learned function 𝒇

𝒇 = “brown fox”Do: 

Training

Given: Labeled data as training dataset

(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 training data, 𝑦𝑖: label 

𝑥𝑖 = 𝑦𝑖 =“can I”

Output: A learned function 𝒇 from X to Y

𝒇: 𝑥 ↦ 𝑦

Example: Classification

SEP-28k Dataset

Supervised Learning
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What Software to Be Accelerated? --- RNN

Image 

captioning

(image →

words)

Translation 

(words →

words)

Sentiment 

classification 

(words →

sentiment)

Video frame 

classification 

(frames →

classes)
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What Hardware Will Be Covered in This Course?
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The von Neumann structure, also known as the Princeton

structure, is a memory structure that merges program

instruction memory and data memory together.

The program instruction memory address and the data memory

address point to different physical locations in the same memory,

so the program instruction and data are of the same width.

Intel's 12th Gen “Alder Lake” 10nm 
Desktop CPU

NVIDIA RTX A6000 Workstation 
Graphics Card (in my lab)

ODROID-XU4 Single Board Computer with 
Quad Core 2GHz A15, 2GB RAM

NVIDIA Jetson Nano

https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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What Hardware Will Be Covered in This Course?
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Streaming architecture: data items are pushed in and out as
sequential streams, the instructions are mapped into
programmable circuit units along the path from the input
ports to output ports. Therefore, instead of fetching
instructions and data back and forth from the memory, the
computation gets performed as the data streams flow
through the circuit units in one pass.

ZCU Series (102, 104, 106)

ASIC

PYNQ

Xilinx Alveo U280 Data Center 
Accelerator Card

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
http://www.pynq.io/
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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What Hardware Will Be Covered in This Course?
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In-memory computing is the technique of running

computer calculations entirely in computer memory (e.g.,

in RAM).

[Yan, Advanced Intelligent Systems 2019]
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What Hardware Will Be Covered in This Course?
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Quantum computing is a type of computation that harnesses the

collective properties of quantum states, such as superposition,

interference, and entanglement, to perform calculations.

Classical Bit

Quantum Bit (Qubit)

𝑋 = 0 𝒐𝒓 1

|𝜓⟩ = 0 |1⟩and

𝜓 = 𝑎0 0 + 𝑎1|1⟩

01

Reading out Information from Qubit 

(Measurement)

𝜓

0

1𝑎1
2

𝑎0
2

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑁𝑜𝑛−𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

1

0

𝑎0
2 + 𝑎1

2 = 100%

40% + 60% = 100%
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Why Need Specialized Hardware Accelerators?
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• Specialized High-Efficiency Computing!

• Why specialization?

• Power constraint of modern computers

<< 1W ~ 1W ~ 15W ~ 50W ~ 100W ~ 100W

[Image credit]: Prof. Zhiru Zhang @ Cornell



ECE618 HW Accelerators for ML Dr. Weiwen Jiang, ECE, GMU

Why Need Specialized Hardware Accelerators?
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• Specialized High-Efficiency Computing!

• Why specialization?

• Power constraint of modern computers

• In-efficiency of general–purpose computing

[Images credit]: Prof. Callie Hao @ GATech

6%

24%

28%

42%

70%

Embedded Processor Energy Breakdown

Arithmetic Clock and control Data supply Instruction supply
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Why Need Specialized Hardware Accelerators?
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• Specialized High-Efficiency Computing!

• Why specialization?

• Power constraint of modern computers

• In-efficiency of general–purpose computing

• Data and computation explosion (big data, AI)

[Images credit]: Prof. Callie Hao @ GATech

https://openai.com/blog/ai-and-compute/

[Bianco, IEEE Access 2018]
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Why Need Specialized Hardware Accelerators?
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• Specialized High-Efficiency Computing!

• Why specialization?

• Power constraint of modern computers

• In-efficiency of general–purpose computing

• Data and computation explosion (big data, AI)

• Real-time processing requirement

30 FPS

[Bianco, IEEE Access 2018]

[Images credit]: Prof. Callie Hao @ GATech
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An Overview of Hardware Accelerators
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Intel's 12th Gen “Alder Lake” 10nm 
Desktop CPU

NVIDIA RTX A6000 Workstation 
Graphics Card (in my lab)

ODROID-XU4 Single Board Computer with 
Quad Core 2GHz A15, 2GB RAM

NVIDIA Jetson Nano

ZCU Series (102, 104, 106)

ASIC

PYNQ

Xilinx Alveo U280 Data Center 
Accelerator Card

https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
http://www.pynq.io/
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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Date Topic

Jan. 24 Course Information & Machine Learning and FPGA Accelerator Recap

Jan. 31 Vector Architectures, FPGAs and GPU Architectures

Feb. 7 ASIC Accelerators

Session I: Classical Computing Accelerators for Machine Learning

Intel's 12th Gen “Alder Lake” 10nm 
Desktop CPU

NVIDIA RTX A6000 Workstation 
Graphics Card (in my lab)

ODROID-XU4 Single Board Computer with 
Quad Core 2GHz A15, 2GB RAM

NVIDIA Jetson Nano

ZCU Series (102, 104, 106)

ASIC

PYNQ

Xilinx Alveo U280 Data Center 
Accelerator Card

https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
http://www.pynq.io/
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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Schedule
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Date Topic

Feb. 14 In-Memory Computing Accelerator Design

Feb. 21 Neuromorphic Accelerators

Feb. 28 Hyperdimensional Computing Accelerators

Mar. 07 Quantum Neural Network Accelerators

Session II: Novel Post-Moore Computing Accelerators for ML
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Schedule
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Date Topic

Mar. 28 Project Proposal

Apr. 04 Distributed Learning

Apr. 11 Hands-on Accelerator Design (1)

Apr. 18 Project Overview

Apr. 25 Hands-on Accelerator Design (2)

May 02 Project Presentations

May 11-18 Final exam

Session III: Other Accelerator Related Topics
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Expectation & Final Project
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• Implement ML on any hardware in a team with 1-3 students

Intel's 12th Gen “Alder Lake” 10nm 
Desktop CPU

NVIDIA RTX A6000 Workstation 
Graphics Card (in my lab)

ODROID-XU4 Single Board Computer 
with Quad Core 2GHz A15, 2GB RAM

NVIDIA Jetson Nano

ZCU Series (102, 104, 106)

ASIC

PYNQ

Xilinx Alveo U280 Data Center 
Accelerator Card

https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
http://www.pynq.io/
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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What Did We Learn in ECE 554? (Recap)
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Hardware

Embedded Systems

Software

Computer Vision

Application

Natural Language

Games

…

ML/DL Algorithms

CNN

LSTMRNN RL

MLP

Transformer MLP-Mixer

AN

…

Performance Model

Resource Usage

Power

Latency

Optimization

Hardware Design

Mapping/Scheduling

Communication

Optimization

Network Design

Network Training

Model Compression

Network Inference
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ECE 554 Course Recap

• Machine Learning Basis:

▪ Different neural networks: MLP, CNN, RNN, RL

▪ Training (Gradient Descent) and inferencing neural networks using Pytorch

▪ Implement convolution using “for loops”

35 |  George Mason University
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Biological 
Neuron
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Human intelligence reside 

in the brain:

• Approximately 86 billion neurons in the human brain

• The brain is a network of neurons, connected with nearly 1014 − 1015 synapses 

How to equip intelligence in the machine?

• To understand how the brain network is constructed

• To mimic the brain
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Biological 
Neuron
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Neurons work together:

• Cell body process the information

• Dendrites receive messages from other neurons

• Axon transmit the output to many smaller branches

• Synapses are the contact points between axon (Neuron 1) and dendrites (Neuron 2) for 

message passing

Cell body receives input signal from dendrites and produce output signal

along axon, which interact with the next neurons via synaptic weights

Synaptic weights are learnable to perform useful computations 

(e.g., Recognizing objects, understanding language, making plans, controlling the body.)
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Artificial Neuron Design

38 |  George Mason University

◼ Idealized neuron models

◼ Idealization removes complicated details that are not essential for 

understanding the main principles.

◼ It allows us to apply mathematics and to make analogies.
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McCulloch-Pitts (MP) Neuron
The first computational model of a biological neuron @ 1943

39 |  George Mason University

Warren McCulloch

Walter Pitts

Cell Body

𝒇
Dendrite

Dendrite

Dendrite

Synapse

Synapse

Synapse

𝑥0

𝑥1

𝑥2

𝒈
Axon

Signal Direction

𝑦 = 𝑓 𝑔 𝒙

Assumptions:

• Binary devices (i.e., 

𝑥𝑖 ∈ 0,1 and 𝑦 ∈ 0,1 )

• Identical synaptic weights

(i.e., +1)

• Activation function 𝒇 has a

fixed threshold 𝜽

+1

+1

+1

0

y

1

𝜽
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Artificial Neuron Design
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◼ Idealized neuron models

◼ Idealization removes complicated details that are not essential for 

understanding the main principles.

◼ It allows us to apply mathematics and to make analogies.

◼ Break the limitations on MP Neuron

◼ What about non-boolean inputs (say, real number)? 

◼ What if we want to assign more weight (importance) to some inputs? 

◼ What about functions which are not linearly separable ? 

◼ Do we always need to hand code the threshold?
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Multi-Layer Perceptron (MLP) – Lecture 2
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• Input layer, output layer and hidden layers

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec2-Train_NN.pdf
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Deep Convolutional Neural Networks (CNN) – Lecture 3
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●One of the most widely used types of deep network

●Fully-connected nets treat far apart input pixels same as those close by 

– Hence spatial information must be inferred from the training data

● In contrast, CNN proposes an architecture that inherently tries to take 

advantage of the spatial structure

– Such an architecture makes convolutional networks fast to train

– This, in turn, helps us train even deeper, many-layer networks

●Today, deep convolutional networks or some close variants are used in 

solving many interesting problems that go beyond image classification

●We will use image classification as a driving use case to explain the main 

concepts behind CNN

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec3-CNN.pdf
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Convolution – Lecture 3
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Parameters:

• N: input channels

• M: output channels

• K: kernel size

• P: padding size

• S: stride

• D: dilation

• R: rows

• C: columns

CLASS

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype

=None)

[ref] Aqeel Anwar, What is Transposed Convolutional Layer? https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec3-CNN.pdf
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
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From Static Image to Sequences of Data

44 |  George Mason University
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RNN and Feedforward Network – Lecture 5

• Assume each connection has 1 

unit delay

• RNN can be unrolled into 

feedforward networks

• Each layer keeps on 

reusing the same weights

w1 w2

w3 w4

time=0

time=2

time=1

time=3

w1 w2
w3 w4

w1 w2
w3 w4

w1 w2
w3 w4

Courtesy to Geff. Hinton

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec5-NLP.pdf
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RNN and Feedforward Network – Lecture 5

From GoodFellow et al. 

Deep Learning

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec5-NLP.pdf
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ECE 554 Course Recap

• Machine Learning Basis:

▪ Different neural networks: MLP, CNN, RNN, RL

▪ Training (Gradient Descent) and inferencing neural networks using Pytorch

▪ Implement convolution using “for loops”

• Put Machine Learning onto Embedded Systems:

▪ Introduction to HLS (Lec 8-9)

o Using MLP as example in class

o Using CNN as example in Labs, which is based on the “for loop” implementation

▪ Model compression on FPGA: pruning and quantization (Lec 10-11)

▪ Neural architecture search (Lec 12)

o Using RNN-based RL as controller/optimizer

o Using Gradient Descent approach for optimization

▪ Data movement in HLS-based FPGA implementation (Lec 13)

▪ Co-explore neural architectures and FPGA design (Lec 14)

47 |  George Mason University
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High-Level Synthesis: HLS – Lecture 8
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• High-Level Synthesis

‒ Creates an RTL implementation from
C, C++, System C, OpenCL API C
kernel code

‒ Extracts control and dataflow from
the source code

‒ Implements the design based on
defaults and user applied directives

• Many implementation are possible from

the same source description

‒ Smaller designs, faster designs,
optimal designs

‒ Enables design exploration

https://jqub.ece.gmu.edu/2021/09/01/ML4Emb/slides/Lec8-HLS.pdf
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C Validation and RTL Verification – Lecture 8
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• There are two steps to verifying the design

– Pre-synthesis: C Validation

• Validate the algorithm is correct

– Post-synthesis: RTL Verification

• Verify the RTL is correct

• C validation

– A HUGE reason users want to use HLS

• Fast, free verification
− Validate the algorithm is correct before synthesis

• Follow the test bench tips given over

• RTL Verification

• Vivado HLS can co-simulate the RTL with the 
original test bench

© Copyright 2016 Xilinx

Validate C

Verify RTL

https://jqub.ece.gmu.edu/2021/09/01/ML4Emb/slides/Lec8-HLS.pdf
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AXI_Stream – Lecture 13
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https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec13-HWNAS.pdf
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Test Bench – Lecture 13
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https://colab.research.google.com/drive/1TufHcDN

Mftm3bwAfcKEF5Njev0y_v6rM#scrollTo=X3pBQ

myNW4rs

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec13-HWNAS.pdf
https://colab.research.google.com/drive/1TufHcDNMftm3bwAfcKEF5Njev0y_v6rM#scrollTo=X3pBQmyNW4rs
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Export RTL as IP Core – Lecture 13
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Synthesis

https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec13-HWNAS.pdf
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Import the IP into Block Design – Lecture 13
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https://jqub.github.io/2021/09/01/ML4Emb/slides/Lec13-HWNAS.pdf
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Goal: Enable AI for Everyone – Lecture 14
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Level 1: Automation of
Neural Network Design

Level 2: Automation of
AI System Design

MNasNetNASNetNAS

ProxylessNAS

FBNet

FNAS

……

AI Democratization —— Two Levels

https://jqub.ece.gmu.edu/2021/09/01/ML4Emb/slides/Lec14-Co-DesignNAS.pdf
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One Network Cannot Work for All Platforms – Lecture 14
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AlexNet
ResNet

MobileNet
NASNet

◆ Cloud / Server

• Unlimited Resource

• Maximizing Accuracy

• AlexNet, VGGNet, ResNet, …

◆ Mobile Phones

• Fixed Hardware

• Accuracy v.s. Latency

• MnasNet, ProxylessNAS, …

◆ Hardware Accelerators (e.g., FPGA)

• Hardware Design Flexibility

• Accuracy, Latency, and Energy

• FNAS, SkyNet, EDDNet…

MnasNet

ProxylessNAS

FBNet

SkyNet

FNAS
EDDNet
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Neural NetworksDatasets / Applications

Hardware Platforms

FPGA
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• Domain knowledge and 

excessive labor

• It takes too long to devise new 

architectures

Problem

Name Year Acc.(T5)

AlexNet 2012 83.4%

ZFNet 2013 88.3%

VGGNet 2014 92.7%

RestNet 2015 96.4%

GoogleNet 2016 96.9%

1 year for only 1 application

Manual AI Design 
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Manual AI Design 

• Low Efficiency, hundreds even 

thousands of GPU hours

• Mono-Objective: Accuracy, 

leading network too complicated

Problem

Automatic NAS

Controller 

(RNN)

Train from Scratch

To Obtain Accuracy 

A

Sample architecture NN 

with probability p

Compute gradient of p and 

scale it by A to update the 

controller 

RL NAS

Reinforcement Learning Based NAS
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Manual AI Design 

RL NAS

Automatic NAS

Name Time

DARTS Jun. 2018

DARTS

Super Net
Trained

Super Net
Sub-Net

Search
Space
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Manual AI Design 
Automatic NAS

Latency-Aware NAS

Controller Trainer
Performance

Predictor

LatencyAccuracy

Latency-Aware NAS

Name Time

MnasNet Jul. 2018

ProxylessNAS Dec. 2018

FBNet Dec. 2018
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Manual AI Design 
Automatic NAS

Latency-Aware NAS

Co-Design NAS-FPGAFNAS

Name Time

FNAS (ours) Jan. 2019

DNN/FPGA Apr. 2019

SkyNet Sep. 2019

EDDNet May. 2020

FNAS - DAC’19 (Best Paper Nomination)
TCAD’20 (Best Paper Award)
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• Selection of the Backbone Architecture

• VGG (NAS with RL, FNAS), GoogLeNet (NASNet), MobileNet (FBNet, ProxylessNAS), etc.

• Determination of the Search Space

• Software: Number of Channels, Kernel Size, Convolution Type, etc.

• Hardware: Loop Titling Parameters, Loop Order, Schedule, etc.

• Optimization Approaches

• Deep Reinforcement Learning: RNN based controller

• Gradient Descent: DARTS

• Metaheuristics: Swarm

• Optimization Objective(s):

• Software: Accuracy, Robustness, Fairness, etc.

• Hardware: Latency, Chip Area, Energy Efficiency, etc.

https://jqub.ece.gmu.edu/2021/09/01/ML4Emb/slides/Lec14-Co-DesignNAS.pdf
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Programming Platform
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https://colab.research.google.com/
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