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Abstract—Deep neural networks (DNNs) are currently widely
used for many artificial intelligence (AI) applications including
computer vision, speech recognition, and robotics. While DNNs
deliver state-of-the-art accuracy on many AI tasks, it comes at the
cost of high computational complexity. Accordingly, techniques
that enable efficient processing of DNNs to improve energy
efficiency and throughput without sacrificing application accuracy
or increasing hardware cost are critical to the wide deployment
of DNNs in AI systems.

This article aims to provide a comprehensive tutorial and
survey about the recent advances towards the goal of enabling
efficient processing of DNNs. Specifically, it will provide an
overview of DNNs, discuss various hardware platforms and
architectures that support DNNs, and highlight key trends in
reducing the computation cost of DNNs either solely via hardware
design changes or via joint hardware design and DNN algorithm
changes. It will also summarize various development resources
that enable researchers and practitioners to quickly get started
in this field, and highlight important benchmarking metrics and
design considerations that should be used for evaluating the
rapidly growing number of DNN hardware designs, optionally
including algorithmic co-designs, being proposed in academia
and industry.

The reader will take away the following concepts from this
article: understand the key design considerations for DNNs; be
able to evaluate different DNN hardware implementations with
benchmarks and comparison metrics; understand the trade-offs
between various hardware architectures and platforms; be able to
evaluate the utility of various DNN design techniques for efficient
processing; and understand recent implementation trends and
opportunities.

I. INTRODUCTION

Deep neural networks (DNNs) are currently the foundation
for many modern artificial intelligence (AI) applications [1].
Since the breakthrough application of DNNs to speech recogni-
tion [2] and image recognition [3], the number of applications
that use DNNs has exploded. These DNNs are employed in a
myriad of applications from self-driving cars [4], to detecting
cancer [5] to playing complex games [6]. In many of these
domains, DNNs are now able to exceed human accuracy. The
superior performance of DNNs comes from its ability to extract
high-level features from raw sensory data after using statistical
learning over a large amount of data to obtain an effective
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representation of an input space. This is different from earlier
approaches that use hand-crafted features or rules designed by
experts.

The superior accuracy of DNNs, however, comes at the
cost of high computational complexity. While general-purpose
compute engines, especially graphics processing units (GPUs),
have been the mainstay for much DNN processing, increasingly
there is interest in providing more specialized acceleration of
the DNN computation. This article aims to provide an overview
of DNNs, the various tools for understanding their behavior,
and the techniques being explored to efficiently accelerate their
computation.

This paper is organized as follows:
• Section II provides background on the context of why

DNNs are important, their history and applications.
• Section III gives an overview of the basic components of

DNNs and popular DNN models currently in use.
• Section IV describes the various resources used for DNN

research and development.
• Section V describes the various hardware platforms used

to process DNNs and the various optimizations used
to improve throughput and energy efficiency without
impacting application accuracy (i.e., produce bit-wise
identical results).

• Section VI discusses how mixed-signal circuits and new
memory technologies can be used for near-data processing
to address the expensive data movement that dominates
throughput and energy consumption of DNNs.

• Section VII describes various joint algorithm and hardware
optimizations that can be performed on DNNs to improve
both throughput and energy efficiency while trying to
minimize impact on accuracy.

• Section VIII describes the key metrics that should be
considered when comparing various DNN designs.

II. BACKGROUND ON DEEP NEURAL NETWORKS (DNN)

In this section, we describe the position of DNNs in the
context of AI in general and some of the concepts that motivated
its development. We will also present a brief chronology of
the major steps in its history, and some current domains to
which it is being applied.

A. Artificial Intelligence and DNNs

DNNs, also referred to as deep learning, are a part of
the broad field of AI, which is the science and engineering
of creating intelligent machines that have the ability to
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Fig. 1. Deep Learning in the context of Artificial Intelligence.

achieve goals like humans do, according to John McCarthy,
the computer scientist who coined the term in the 1950s.
The relationship of deep learning to the whole of artificial
intelligence is illustrated in Fig. 1.

Within artificial intelligence is a large sub-field called
machine learning, which was defined in 1959 by Arthur Samuel
as the field of study that gives computers the ability to learn
without being explicitly programmed. That means a single
program, once created, will be able to learn how to do some
intelligent activities outside the notion of programming. This is
in contrast to purpose-built programs whose behavior is defined
by hand-crafted heuristics that explicitly and statically define
their behavior.

The advantage of an effective machine learning algorithm
is clear. Instead of the laborious and hit-or-miss approach of
creating a distinct, custom program to solve each individual
problem in a domain, the single machine learning algorithm
simply needs to learn, via a processes called training, to handle
each new problem.

Within the machine learning field, there is an area that is
often referred to as brain-inspired computation. Since the brain
is currently the best ‘machine’ we know for learning and
solving problems, it is a natural place to look for a machine
learning approach. Therefore, a brain-inspired computation is
a program or algorithm that takes some aspects of its basic
form or functionality from the way the brain works. This is in
contrast to attempts to create a brain, but rather the program
aims to emulate some aspects of how we understand the brain
to operate.

Although scientists are still exploring the details of how the
brain works, it is generally believed that the main computational
element of the brain is the neuron. There are approximately
86 billion neurons in the average human brain. The neurons
themselves are connected together with a number of elements
entering them called dendrites and an element leaving them
called an axon as shown in Fig. 2. The neuron accepts the
signals entering it via the dendrites, performs a computation on
those signals, and generates a signal on the axon. These input
and output signals are referred to as activations. The axon of
one neuron branches out and is connected to the dendrites of
many other neurons. The connections between a branch of the
axon and a dendrite is called a synapse. There are estimated
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Fig. 2. Connections to a neuron in the brain. xi, wi, f(·), and b are the
activations, weights, non-linear function and bias, respectively. (Figure adopted
from [7].)

to be 1014 to 1015 synapses in the average human brain.
A key characteristic of the synapse is that it can scale the

signal (xi) crossing it as shown in Fig. 2. That scaling factor
can be referred to as a weight (wi), and the way the brain is
believed to learn is through changes to the weights associated
with the synapses. Thus, different weights result in different
responses to an input. Note that learning is the adjustment
of the weights in response to a learning stimulus, while the
organization (what might be thought of as the program) of the
brain does not change. This characteristic makes the brain an
excellent inspiration for a machine-learning-style algorithm.

Within the brain-inspired computing paradigm there is a
subarea called spiking computing. In this subarea, inspiration
is taken from the fact that the communication on the dendrites
and axons are spike-like pulses and that the information being
conveyed is not just based on a spike’s amplitude. Instead,
it also depends on the time the pulse arrives and that the
computation that happens in the neuron is a function of not just
a single value but the width of pulse and the timing relationship
between different pulses. An example of a project that was
inspired by the spiking of the brain is the IBM TrueNorth [8].
In contrast to spiking computing, another subarea of brain-
inspired computing is called neural networks, which is the
focus of this article.1

B. Neural Networks and Deep Neural Networks (DNNs)

Neural networks take their inspiration from the notion that
a neuron’s computation involves a weighted sum of the input
values. These weighted sums correspond to the value scaling
performed by the synapses and the combining of those values
in the neuron. Furthermore, the neuron doesn’t just output that
weighted sum, since the computation associated with a cascade
of neurons would then be a simple linear algebra operation.
Instead there is a functional operation within the neuron that
is performed on the combined inputs. This operation appears
to be a non-linear function that causes a neuron to generate
an output only if the inputs cross some threshold. Thus by
analogy, neural networks apply a non-linear function to the
weighted sum of the input values. We look at what some of
those non-linear functions are in Section III-A1.

1Note: Recent work using TrueNorth in a stylized fashion allows it to be
used to compute reduced precision neural networks [9]. These types of neural
networks are discussed in Section VII-A.



3

Neurons 
(activations) 

Synapses 
(weights) 

(a) Neurons and synapses

X1 

X2 

X3 

Y1 

Y2 

Y3 

Y4 

W11 

W34 

L1 Input Neurons 
(e.g. image pixels) 

Layer 1 

L1 Output Neurons 
a.k.a. Activations 

Layer 2 

L2 Output Neurons 

(b) Compute weighted sum for each layer

Fig. 3. Simple neural network example and terminology (Figure adopted
from [7]).

Fig. 3(a) shows a diagrammatic picture of a computational
neural network. The neurons in the input layer receive some
values and propagate them to the neurons in the middle layer
of the network, which is also frequently called a ‘hidden
layer’. The weighted sums from one or more hidden layers are
ultimately propagated to the output layer, which presents the
final outputs of the network to the user. To align brain-inspired
terminology with neural networks, the outputs of the neurons
are often referred to as activations, and the synapses are often
referred to as weights as shown in Fig. 3(a). We will use the
activation/weight nomenclature in this article.

Fig. 3(b) shows an example of the computation at each

layer: yj = f(
3∑

i=1

Wij ×xi+ b), where Wij , xi and yj are the

weights, input activations and output activations, respectively,
and f(·) is a non-linear function described in Section III-A1.
The bias term b is omitted from Fig. 3(b) for simplicity.

Within the domain of neural networks, there is an area called
deep learning, in which the neural networks have more than
three layers, i.e., more than one hidden layer. Today, the typical
numbers of network layers used in deep learning range from
five to more than a thousand. In this article, we will generally
use the terminology deep neural networks (DNNs) to refer to
the neural networks used in deep learning.

DNNs are capable of learning high-level features with more
complexity and abstraction than shallower neural networks. An
example that demonstrates this point is using DNNs to process
visual data. In these applications, pixels of an image are fed into
the first layer of a DNN, and the outputs of that layer can be
interpreted as representing the presence of different low-level
features in the image, such as lines and edges. At subsequent
layers, these features are then combined into a measure of the
likely presence of higher level features, e.g., lines are combined
into shapes, which are further combined into sets of shapes.
And finally, given all this information, the network provides a
probability that these high-level features comprise a particular
object or scene. This deep feature hierarchy enables DNNs to
achieve superior performance in many tasks.

C. Inference versus Training

Since DNNs are an instance of a machine learning algorithm,
the basic program does not change as it learns to perform its
given tasks. In the specific case of DNNs, this learning involves
determining the value of the weights (and bias) in the network,
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Fig. 4. An example of backpropagation through a neural network.

and is referred to as training the network. Once trained, the
program can perform its task by computing the output of
the network using the weights determined during the training
process. Running the program with these weights is referred
to as inference.

In this section, we will use image classification, as shown
in Fig. 6, as a driving example for training and using a DNN.
When we perform inference using a DNN, we give an input
image and the output of the DNN is a vector of scores, one for
each object class; the class with the highest score indicates the
most likely class of object in the image. The overarching goal
for training a DNN is to determine the weights that maximize
the score of the correct class and minimize the scores of the
incorrect classes. When training the network the correct class
is often known because it is given for the images used for
training (i.e., the training set of the network). The gap between
the ideal correct scores and the scores computed by the DNN
based on its current weights is referred to as the loss (L).
Thus the goal of training DNNs is to find a set of weights to
minimize the average loss over a large training set.

When training a network, the weights (wij) are usually
updated using a hill-climbing optimization process called
gradient descent. A multiple of the gradient of the loss relative
to each weight, which is the partial derivative of the loss with
respect to the weight, is used to update the weight (i.e., updated
wt+1

ij = wt
ij−α ∂L

∂wij
, where α is called the learning rate). Note

that this gradient indicates how the weights should change in
order to reduce the loss. The process is repeated iteratively to
reduce the overall loss.

An efficient way to compute the partial derivatives of
the gradient is through a process called backpropagation.
Backpropagation, which is a computation derived from the
chain rule of calculus, operates by passing values backwards
through the network to compute how the loss is affected by
each weight.

This backpropagation computation is, in fact, very similar
in form to the computation used for inference as shown
in Fig. 4 [10].2 Thus, techniques for efficiently performing

2To backpropagate through each filter: (1) compute the gradient of the loss
relative to the weights from the filter inputs (i.e., the forward activations) and
the gradients of the loss relative to the filter outputs; (2) compute the gradient
of the loss relative to the filter inputs from the filter weights and the gradients
of the loss relative to the filter outputs.
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inference can sometimes be useful for performing training.
It is, however, important to note a couple of points. First,
backpropagation requires intermediate outputs of the network
to be preserved for the backwards computation, thus training
has increased storage requirements. Second, due to the gradients
use for hill-climbing, the precision requirement for training
is generally higher than inference. Thus many of the reduced
precision techniques discussed in Section VII are limited to
inference only.

A variety of techniques are used to improve the efficiency
and robustness of training. For example, often the loss from
multiple sets of input data, i.e., a batch, are collected before a
single pass of weight update is performed; this helps to speed
up and stabilize the training process.

There are multiple ways to train the weights. The most
common approach, as described above, is called supervised
learning, where all the training samples are labeled (e.g., with
the correct class). Unsupervised learning is another approach
where all the training samples are not labeled and essentially
the goal is to find the structure or clusters in the data. Semi-
supervised learning falls in between the two approaches where
only a small subset of the training data is labeled (e.g., use
unlabeled data to define the cluster boundaries, and use the
small amount of labeled data to label the clusters). Finally,
reinforcement learning can be used to the train weights such
that given the state of the current environment, the DNN can
output what action the agent should take next to maximize
expected rewards; however, the rewards might not be available
immediately after an action, but instead only after a series of
actions.

Another commonly used approach to determine weights is
fine-tuning, where previously-trained weights are available and
are used as a starting point and then those weights are adjusted
for a new dataset (e.g., transfer learning) or for a new constraint
(e.g., reduced precision). This results in faster training than
starting from a random starting point, and can sometimes result
in better accuracy.

This article will focus on the efficient processing of DNN
inference rather than training, since DNN inference is often
performed on embedded devices (rather than the cloud) where
resources are limited as discussed in more details later.

D. Development History

Although neural nets were proposed in the 1940s, the first
practical application employing multiple digital neurons didn’t
appear until the late 1980s with the LeNet network for hand-
written digit recognition [11]3. Such systems are widely used
by ATMs for digit recognition on checks. However, the early
2010s have seen a blossoming of DNN-based applications with
highlights such as Microsoft’s speech recognition system in
2011 [2] and the AlexNet system for image recognition in
2012 [3]. A brief chronology of deep learning is shown in
Fig. 5.

The deep learning successes of the early 2010s are believed
to be a confluence of three factors. The first factor is the

3In the early 1960s, single analog neuron systems were used for adaptive
filtering [12, 13].

DNN Timeline

• 1940s - Neural networks were proposed
• 1960s - Deep neural networks were proposed
• 1989 - Neural networks for recognizing digits (LeNet)
• 1990s - Hardware for shallow neural nets (Intel ETANN)
• 2011 - Breakthrough DNN-based speech recognition

(Microsoft)
• 2012 - DNNs for vision start supplanting hand-crafted

approaches (AlexNet)
• 2014+ - Rise of DNN accelerator research (Neuflow,

DianNao...)

Fig. 5. A concise history of neural networks. ’Deep’ refers to the number of
layers in the network.

amount of available information to train the networks. To learn
a powerful representation (rather than using a hand-crafted
approach) requires a large amount of training data. For example,
Facebook receives over 350 millions images per day, Walmart
creates 2.5 Petabytes of customer data hourly and YouTube
has 300 hours of video uploaded every minute. As a result,
the cloud providers and many businesses have a huge amount
of data to train their algorithms.

The second factor is the amount of compute capacity
available. Semiconductor device and computer architecture
advances have continued to provide increased computing
capability, and we appear to have crossed a threshold where the
large amount of weighted sum computation in DNNs, which
is required for both inference and training, can be performed
in a reasonable amount of time.

The successes of these early DNN applications opened the
floodgates of algorithmic development. It has also inspired the
development of several (largely open source) frameworks that
make it even easier for researchers and practitioners to explore
and use DNNs. Combining these efforts contributes to the third
factor, which is the evolution of the algorithmic techniques that
have improved application accuracy significantly and broadened
the domains to which DNNs are being applied.

An excellent example of the successes in deep learning can
be illustrated with the ImageNet Challenge [14]. This challenge
is a contest involving several different components. One of the
components is an image classification task where algorithms
are given an image and they must identify what is in the image,
as shown in Fig. 6. The training set consists of 1.2 million
images, each of which is labeled with one of 1000 object
categories that the image contains. For the evaluation phase,
the algorithm must accurately identify objects in a test set of
images, which it hasn’t previously seen.

Fig. 7 shows the performance of the best entrants in the
ImageNet contest over a number of years. One sees that
the accuracy of the algorithms initially had an error rate
of 25% or more. In 2012, a group from the University of
Toronto used graphics processing units (GPUs) for their high
compute capability and a deep neural network approach, named
AlexNet, and dropped the error rate by approximately 10% [3].
Their accomplishment inspired an outpouring of deep learning
style algorithms that have resulted in a steady stream of
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Fig. 6. Example of an image classification task. The machine learning
platform takes in an image and outputs the confidence scores for a predefined
set of classes.
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Fig. 7. Results from the ImageNet Challenge [14].

improvements.
In conjunction with the trend to deep learning approaches

for the ImageNet Challenge, there has been a corresponding
increase in the number of entrants using GPUs. From 2012
when only 4 entrants used GPUs to 2014 when almost all
the entrants (110) were using them. This reflects the almost
complete switch from traditional computer vision approaches
to deep learning-based approaches for the competition.

In 2015, the ImageNet winning entry, ResNet [15], exceeded
human-level accuracy with a top-5 error rate4 below 5%. Since
then, the error rate has dropped below 3% and more focus
is now being placed on more challenging components of the
competition, such as object detection and localization. These
successes are clearly a contributing factor to the wide range
of applications to which DNNs are being applied.

E. Applications of DNN

Many applications can benefit from DNNs ranging from
multimedia to medical space. In this section, we will provide
examples of areas where DNNs are currently making an impact
and highlight emerging areas where DNNs hope to make an
impact in the future.

• Image and Video Video is arguably the biggest of the
big data. It accounts for over 70% of today’s Internet
traffic [16]. For instance, over 800 million hours of video
is collected daily worldwide for video surveillance [17].
Computer vision is necessary to extract meaningful infor-
mation from video. DNNs have significantly improved the
accuracy of many computer vision tasks such as image
classification [14], object localization and detection [18],
image segmentation [19], and action recognition [20].

4The top-5 error rate is measured based on whether the correct answer
appears in one of the top 5 categories selected by the algorithm.

• Speech and Language DNNs have significantly improved
the accuracy of speech recognition [21] as well as many
related tasks such as machine translation [2], natural
language processing [22], and audio generation [23].

• Medical DNNs have played an important role in genomics
to gain insight into the genetics of diseases such as autism,
cancers, and spinal muscular atrophy [24–27]. They have
also been used in medical imaging to detect skin cancer [5],
brain cancer [28] and breast cancer [29].

• Game Play Recently, many of the grand AI challenges
involving game play have been overcome using DNNs.
These successes also required innovations in training
techniques and many rely on reinforcement learning [30].
DNNs have surpassed human level accuracy in playing
Atari [31] as well as Go [6], where an exhaustive search
of all possibilities is not feasible due to the unimaginably
huge number of possible moves.

• Robotics DNNs have been successful in the domain of
robotic tasks such as grasping with a robotic arm [32],
motion planning for ground robots [33], visual naviga-
tion [4, 34], control to stabilize a quadcopter [35] and
driving strategies for autonomous vehicles [36].

DNNs are already widely used in multimedia applications
today (e.g., computer vision, speech recognition). Looking
forward, we expect that DNNs will likely play an increasingly
important role in the medical and robotics fields, as discussed
above, as well as finance (e.g., for trading, energy forecasting,
and risk assessment), infrastructure (e.g., structural safety, and
traffic control), weather forecasting and event detection [37].
The myriad application domains pose new challenges to the
efficient processing of DNNs; the solutions then have to be
adaptive and scalable in order to handle the new and varied
forms of DNNs that these applications may employ.

F. Embedded versus Cloud

The various applications and aspects of DNN processing
(i.e., training versus inference) have different computational
needs. Specifically, training often requires a large dataset5 and
significant computational resources for multiple weight-update
iterations. In many cases, training a DNN model still takes
several hours to multiple days and thus is typically performed
in the cloud. Inference, on the other hand, can happen either
in the cloud or at the edge (e.g., IoT or mobile).

In many applications, it is desirable to have the DNN
inference processing near the sensor. For instance, in computer
vision applications, such as measuring wait times in stores
or predicting traffic patterns, it would be desirable to extract
meaningful information from the video right at the image
sensor rather than in the cloud to reduce the communication
cost. For other applications such as autonomous vehicles,
drone navigation and robotics, local processing is desired since
the latency and security risks of relying on the cloud are
too high. However, video involves a large amount of data,
which is computationally complex to process; thus, low cost
hardware to analyze video is challenging yet critical to enabling

5One of the major drawbacks of DNNs is their need for large datasets to
prevent over-fitting during training.
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Fig. 8. Different types of neural networks (Figure adopted from [7]).

these applications. Speech recognition enables us to seamlessly
interact with electronic devices, such as smartphones. While
currently most of the processing for applications such as Apple
Siri and Amazon Alexa voice services is in the cloud, it is
still desirable to perform the recognition on the device itself to
reduce latency and dependency on connectivity, and to improve
privacy and security.

Many of the embedded platforms that perform DNN infer-
ence have stringent energy consumption, compute and memory
cost limitations; efficient processing of DNNs have thus become
of prime importance under these constraints. Therefore, in this
article, we will focus on the compute requirements for inference
rather than training.

III. OVERVIEW OF DNNS

DNNs come in a wide variety of shapes and sizes depending
on the application. The popular shapes and sizes are also
evolving rapidly to improve accuracy and efficiency. In all
cases, the input to a DNN is a set of values representing the
information to be analyzed by the network. For instance, these
values can be pixels of an image, sampled amplitudes of an
audio wave or the numerical representation of the state of some
system or game.

The networks that process the input come in two major
forms: feed forward and recurrent as shown in Fig. 8(a). In
feed-forward networks all of the computation is performed as a
sequence of operations on the outputs of a previous layer. The
final set of operations generates the output of the network, for
example a probability that an image contains a particular object,
the probability that an audio sequence contains a particular
word, a bounding box in an image around an object or the
proposed action that should be taken. In such DNNs, the
network has no memory and the output for an input is always
the same irrespective of the sequence of inputs previously given
to the network.

In contrast, recurrent neural networks (RNNs), of which
Long Short-Term Memory networks (LSTMs) [38] are a
popular variant, have internal memory to allow long-term
dependencies to affect the output. In these networks, some
intermediate operations generate values that are stored internally
in the network and used as inputs to other operations in
conjunction with the processing of a later input. In this article,
we will focus on feed-forward networks since (1) the major
computation in RNNs is still the weighted sum, which is
covered by the feed-forward networks, and (2) to-date little

attention has been given to hardware acceleration specifically
for RNNs.

DNNs can be composed solely of fully-connected (FC)
layers (also referred to as multi-layer perceptrons, or MLP)
as shown in the leftmost layer of Fig. 8(b). In a FC layer,
all output activations are composed of a weighted sum of
all input activations (i.e., all outputs are connected to all
inputs). This requires a significant amount of storage and
computation. Thankfully, in many applications, we can remove
some connections between the activations by setting the weights
to zero without affecting accuracy. This results in a sparsely-
connected layer. A sparsely connected layer is illustrated in
the rightmost layer of Fig. 8(b).

We can also make the computation more efficient by limiting
the number of weights that contribute to an output. This sort of
structured sparsity can arise if each output is only a function
of a fixed-size window of inputs. Even further efficiency can
be gained if the same set of weights are used in the calculation
of every output. This repeated use of the same weight values is
called weight sharing and can significantly reduce the storage
requirements for weights.

An extremely popular windowed and weight-shared DNN
layer arises by structuring the computation as a convolution,
as shown in Fig. 9(a), where the weighted sum for each output
activation is computed using only a small neighborhood of input
activations (i.e., all weights beyond beyond the neighborhood
are set to zero), and where the same set of weights are shared for
every output (i.e., the filter is space invariant). Such convolution-
based layers are referred to as convolutional (CONV) layers. 6

A. Convolutional Neural Networks (CNNs)

A common form of DNNs is Convolutional Neural Nets
(CNNs), which are composed of multiple CONV layers as
shown in Fig. 10. In such networks, each layer generates a
successively higher-level abstraction of the input data, called
a feature map (fmap), which preserves essential yet unique
information. Modern CNNs are able to achieve superior per-
formance by employing a very deep hierarchy of layers. CNN
are widely used in a variety of applications including image
understanding [3], speech recognition [39], game play [6],
robotics [32], etc. This paper will focus on its use in image
processing, specifically for the task of image classification [3].

Each of the CONV layers in CNN is primarily composed of
high-dimensional convolutions as shown in Fig. 9(b). In this
computation, the input activations of a layer are structured as
a set of 2-D input feature maps (ifmaps), each of which is
called a channel. Each channel is convolved with a distinct
2-D filter from the stack of filters, one for each channel; this
stack of 2-D filters is often referred to as a single 3-D filter.
The results of the convolution at each point are summed across
all the channels. In addition, a 1-D bias can be added to the
filtering results, but some recent networks [15] remove its
usage from parts of the layers. The result of this computation
is the output activations that comprise one channel of output
feature map (ofmap). Additional 3-D filters can be used on

6Note: the structured sparsity in CONV layers is orthogonal to the sparsity
that occurs from network pruning as described in Section VII-B2.
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Fig. 9. Dimensionality of convolutions.
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Fig. 10. Convolutional Neural Networks.

the same input to create additional output channels. Finally,
multiple input feature maps may be processed together as a
batch to potentially improve reuse of the filter weights.

Given the shape parameters in Table I, the computation of
a CONV layer is defined as

O[z][u][x][y] = B[u] +

C−1∑
k=0

S−1∑
i=0

R−1∑
j=0

I[z][k][Ux + i][Uy + j] × W[u][k][i][j],

0 ≤ z < N, 0 ≤ u < M, 0 ≤ x < F, 0 ≤ y < E,

E = (H − R + U)/U, F = (W − S + U)/U.
(1)

O, I, W and B are the matrices of the ofmaps, ifmaps, filters
and biases, respectively. U is a given stride size. Fig. 9(b)
shows a visualization of this computation (ignoring biases).

To align the terminology of CNNs with the generic DNN,
• filters are composed of weights (i.e., synapses)
• input and output feature maps (ifmaps, ofmaps) are

composed of activations (i.e., input and output neurons)

Shape Parameter Description
N batch size of 3-D fmaps
M # of 3-D filters / # of ofmap channels
C # of ifmap/filter channels

H/W ifmap plane height/width
R/S filter plane height/width (= H or W in FC)
E/F ofmap plane height/width (= 1 in FC)

TABLE I
SHAPE PARAMETERS OF A CONV/FC LAYER.

Sigmoid 
1 

-1 

0 

0 1 -1 
y=1/(1+e-x)	

Hyperbolic Tangent 
1 

-1 

0 

0 1 -1 
y=(ex-e-x)/(ex+e-x)	

Rectified Linear Unit  
(ReLU) 

1 

-1 

0 

0 1 -1 

y=max(0,x)	

Leaky ReLU 

1 

-1 

0 

0 1 -1 

y=max(αx,x)	

Exponential LU 

1 

-1 

0 

0 1 -1 
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1) 

Traditional 
Non-Linear 
Activation 
Functions 

Modern 
Non-Linear 
Activation 
Functions 

Fig. 11. Various forms of non-linear activation functions (Figure adopted
from Caffe Tutorial [46]).

From five [3] to more than a thousand [15] CONV layers
are commonly used in recent CNN models. A small number,
e.g., 1 to 3, of fully-connected (FC) layers are typically applied
after the CONV layers for classification purposes. A FC layer
also applies filters on the ifmaps as in the CONV layers, but
the filters are of the same size as the ifmaps. Therefore, it
does not have the weight sharing property of CONV layers.
Eq. (1) still holds for the computation of FC layers with a
few additional constraints on the shape parameters: H = R,
F = S, E = F = 1, and U = 1.

In addition to CONV and FC layers, various optional layers
can be found in a DNN such as the non-linearity, pooling,
and normalization. The function and computations for each of
these layers are discussed next.

1) Non-Linearity: A non-linear activation function is typi-
cally applied after each CONV or FC layer. Various non-linear
functions are used to introduce non-linearity into the DNN as
shown in Fig. 11. These include historically conventional non-
linear functions such as sigmoid or hyperbolic tangent as well
as rectified linear unit (ReLU) [40], which has become popular
in recent years due to its simplicity and its ability to enable
fast training. Variations of ReLU, such as leaky ReLU [41],
parametric ReLU [42], and exponential LU [43] have also been
explored for improved accuracy. Finally, a non-linearity called
maxout, which takes the max value of two intersecting linear
functions, has shown to be effective in speech recognition
tasks [44, 45].

2) Pooling: A variety of computations that reduce the
dimensionality of a feature map are referred to as pooling.
Pooling, which is applied to each channel separately, enables



8

9 3 5 3 

10 32 2 2 

1 3 21 9 

2 6 11 7 

2x2 pooling, stride 2 

32 5 

6 21 

Max pooling Average pooling 

18 3 

3 12 

Fig. 12. Various forms of pooling (Figure adopted from Caffe Tutorial [46]).

the network to be robust and invariant to small shifts and
distortions. Pooling combines, or pools, a set of values in
its receptive field into a smaller number of values. It can be
configured based on the size of its receptive field (e.g., 2×2)
and pooling operation (e.g., max or average), as shown in
Fig. 12. Typically pooling occurs on non-overlapping blocks
(i.e., the stride is equal to the size of the pooling). Usually a
stride of greater than one is used such that there is a reduction
in the dimension of the representation (i.e., feature map).

3) Normalization: Controlling the input distribution across
layers can help to significantly speed up training and improve
accuracy. Accordingly, the distribution of the layer input
activations (σ, µ) are normalized such that it has a zero mean
and a unit standard deviation. In batch normalization (BN),
the normalized value is further scaled and shifted, as shown
in Eq. (2), where the parameters (γ, β) are learned from
training [47]. ε is a small constant to avoid numerical problems.
Prior to this, local response normalization (LRN) [3] was
used, which was inspired by lateral inhibition in neurobiology
where excited neurons (i.e., high value activations) should
subdue its neighbors (i.e., cause low value activations); however,
BN is now considered standard practice in the design of
CNNs while LRN is mostly deprecated. Note that while LRN
usually is performed after the non-linear function, BN is mostly
performed between the CONV or FC layer and the non-linear
function.

y =
x− µ√
σ2 + ε

γ + β (2)

B. Popular DNN Models

Many DNN models have been developed over the past
two decades. Each of these models has a different ‘network
architecture’ in terms of number of layers, layer types, layer
shapes (i.e., filter size, number of channels and filters), and
connections between layers. Understanding these variations
and trends is important for incorporating the right flexibility
in any efficient DNN engine.

In this section, we will give an overview of various popular
DNNs such as LeNet [48] as well as those that competed in
and/or won the ImageNet Challenge [14] as shown in Fig. 7,
most of whose models with pre-trained weights are publicly
available for download; the DNN models are summarized in
Table II. Two results for top-5 error results are reported. In the
first row, the accuracy is boosted by using multiple crops from
the image and an ensemble of multiple trained models (i.e.,
the DNN needs to be run several times); these results were
used to compete in the ImageNet Challenge. The second row
reports the accuracy if only a single crop was used (i.e., the

DNN is run only once), which is more consistent with what
would likely be deployed in real-time and/or energy-constrained
applications.

LeNet [11] was one of the first CNN approaches introduced
in 1989. It was designed for the task of digit classification in
grayscale images of size 28×28. The most well known version,
LeNet-5, contains two CONV layers and two FC layers [48].
Each CONV layer uses filters of size 5×5 (1 channel per filter)
with 6 filters in the first layer and 16 filters in the second layer.
Average pooling of 2×2 is used after each convolution and a
sigmoid is used for the non-linearity. In total, LeNet requires
60k weights and 341k multiply-and-accumulates (MACs) per
image. LeNet led to CNNs’ first commercial success, as it was
deployed in ATMs to recognize digits for check deposits.

AlexNet [3] was the first CNN to win the ImageNet Challenge
in 2012. It consists of five CONV layers and three FC layers.
Within each CONV layer, there are 96 to 384 filters and the
filter size ranges from 3×3 to 11×11, with 3 to 256 channels
each. In the first layer, the 3 channels of the filter correspond
to the red, green and blue components of the input image.
A ReLU non-linearity is used in each layer. Max pooling of
3×3 is applied to the outputs of layers 1, 2 and 5. To reduce
computation, a stride of 4 is used at the first layer of the
network. AlexNet introduced the use of LRN in layers 1 and
2 before the max pooling, though LRN is no longer popular
in later CNN models. One important factor that differentiates
AlexNet from LeNet is that the number of weights is much
larger and the shapes vary from layer to layer. To reduce the
amount of weights and computation in the second CONV layer,
the 96 output channels of the first layer are split into two groups
of 48 input channels for the second layer, such that the filters in
the second layer only have 48 channels. Similarly, the weights
in fourth and fifth layer are also split into two groups. In total,
AlexNet requires 61M weights and 724M MACs to process
one 227×227 input image.

Overfeat [49] has a very similar architecture to AlexNet with
five CONV layers and three FC layers. The main differences
are that the number of filters is increased for layers 3 (384
to 512), 4 (384 to 1024), and 5 (256 to 1024), layer 2 is not
split into two groups, the first fully connected layer only has
3072 channels rather than 4096, and the input size is 231×231
rather than 227×227. As a result, the number of weights grows
to 146M and the number of MACs grows to 2.8G per image.
Overfeat has two different models: fast (described here) and
accurate. The accurate model used in the ImageNet Challenge
gives a 0.65% lower top-5 error rate than the fast model at the
cost of 1.9× more MACs

VGG-16 [50] goes deeper to 16 layers consisting of 13
CONV layers and 3 FC layers. In order to balance out the
cost of going deeper, larger filters (e.g., 5×5) are built from
multiple smaller filters (e.g., 3×3), which have fewer weights,
to achieve the same receptive fields as shown in Fig. 13(a).
As a result, all CONV layers have the same filter size of 3×3.
In total, VGG-16 requires 138M weights and 15.5G MACs
to process one 224×224 input image. VGG has two different
models: VGG-16 (described here) and VGG-19. VGG-19 gives
a 0.1% lower top-5 error rate than VGG-16 at the cost of
1.27× more MACs.
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Fig. 13. Decomposing larger filters into smaller filters.

GoogLeNet [51] goes even deeper with 22 layers. It in-
troduced an inception module, shown in Fig. 14, which is
composed of parallel connections, whereas previously there
was only a single serial connection. Different sized filters (i.e.,
1×1, 3×3, 5×5), along with 3×3 max-pooling, are used for
each parallel connection and their outputs are concatenated
for the module output. Using multiple filter sizes has the
effect of processing the input at multiple scales. For improved
training speed, GoogLeNet is designed such that the weights
and the activations, which are stored for backpropagation during
training, could all fit into the GPU memory. In order to reduce
the number of weights, 1×1 filters are applied as a ‘bottleneck’
to reduce the number of channels for each filter [52]. The 22
layers consist of three CONV layers, followed by 9 inceptions
layers (each of which are two CONV layers deep), and one FC
layer. Since its introduction in 2014, GoogleNet (also referred
to as Inception) has multiple versions: v1 (described here), v3 7

and v4. Inception-v3 decomposes the convolutions by using
smaller 1-D filters as shown in Fig. 13(b) to reduce number
of MACs and weights in order to go deeper to 42 layers.
In conjunction with batch normalization [47], v3 achieves
over 3% lower top-5 error than v1 with 2.5× increase in
computation [53]. Inception-v4 uses residual connections [54],
described in the next section, for a 0.4% reduction in error.

ResNet [15], also known as Residual Net, uses residual
connections to go even deeper (34 layers or more). It was
the first entry DNN in ImageNet Challenge that exceeded
human-level accuracy with a top-5 error rate below 5%. One
of the challenges with deep networks is the vanishing gradient
during training: as the error backpropagates through the network
the gradient shrinks, which affects the ability to update the
weights in the earlier layers for very deep networks. Residual
net introduces a ‘shortcut’ module which contains an identity
connection such that the weight layers (i.e., CONV layers)
can be skipped as shown in Fig. 15. Rather than learning the
function for the weight layers F (x), the shortcut module learns
the residual mapping (F (x) = H(x) − x). Initially, F (x) is
zero and the identity connection is taken; then gradually during
training, the actual forward connection through the weight layer

7v2 is very similar to v3.
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Fig. 14. Inception module from GoogleNet [51] with example channel lengths.
Note that each CONV layer is followed by a ReLU (not drawn).
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Fig. 15. Shortcut module from ResNet [15]. Note that ReLU following last
CONV layer in short cut is after the addition.

is used. This is similar to the LSTM networks that are used for
sequential data. ResNet also uses the ‘bottleneck’ approach of
using 1×1 filters to reduce the number of weight parameters.
As a result, the two layers in the shortcut module are replaced
by three layers (1×1, 3×3, 1×1) where the 1×1 reduces and
then increases (restores) the number of weights. ResNet-50
consists of one CONV layer, followed by 16 shortcut layers
(each of which are three CONV layers deep), and one FC
layer; it requires 25.5M weights and 3.9G MACs per image.
There are various versions of ResNet with multiple depths
(e.g., without bottleneck: 18, 34; with bottleneck: 50, 101, 152).
The ResNet with 152 layers was the winner of the ImageNet
Challenge requiring 11.3G MACs and 60M weights. Compared
to ResNet-50, it reduces the top-5 error by around 1% at the
cost of 2.9× more MACs and 2.5× more weights.

Several trends can be observed in the popular DNNs shown
in Table II. Increasing the depth of the network tends to provide
higher accuracy. Controlling for number of weights, a deeper
network can support a wider range of non-linear functions
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that are more discriminative and also provides more levels
of hierarchy in the learned representation [15, 50, 51, 55].
The number of filter shapes continues to vary across layers,
thus flexibility is still important. Furthermore, most of the
computation has been placed on CONV layers rather than FC
layers. In addition, the number of weights in the FC layers is
reduced and in most recent networks (since GoogLeNet) the
CONV layers also dominate in terms of weights. Thus, the
focus of hardware implementations should be on addressing
the efficiency of the CONV layers, which in many domains
are increasingly important.

IV. DNN DEVELOPMENT RESOURCES

One of the key factors that has enabled the rapid development
of DNNs is the set of development resources that have been
made available by the research community and industry. These
resources are also key to the development of DNN accelerators
by providing characterizations of the workloads and facilitating
the exploration of trade-offs in model complexity and accuracy.
This section will describe these resources such that those who
are interested in this field can quickly get started.

A. Frameworks

For ease of DNN development and to enable sharing of
trained networks, several deep learning frameworks have been
developed from various sources. These open source libraries
contain software libraries for DNNs. Caffe was made available
in 2014 from UC Berkeley [46]. It supports C, C++, Python
and MATLAB. Tensorflow was released by Google in 2015,
and supports C++ and python; it also supports multiple CPUs
and GPUs and has more flexibility than Caffe, with the
computation expressed as dataflow graphs to manage the
tensors (multidimensional arrays). Another popular framework
is Torch, which was developed by Facebook and NYU and
supports C, C++ and Lua. There are several other frameworks
such as Theano, MXNet, CNTK, which are described in [60].
There are also higher-level libraries that can run on top of
the aforementioned frameworks to provide a more universal
experience and faster development. One example of such
libraries is Keras, which is written in Python and supports
Tensorflow, CNTK and Theano.

The existence of such frameworks are not only a convenient
aid for DNN researchers and application designers, but they
are also invaluable for engineering high performance or more
efficient DNN computation engines. In particular, because the
frameworks make heavy use of a set primitive operations,
such processing of a CONV layer, they can incorporate use of
optimized software or hardware accelerators. This acceleration
is transparent to the user of the framework. Thus, for example,
most frameworks can use Nvidia’s cuDNN library for rapid
execution on Nvidia GPUs. Similarly, transparent incorporation
of dedicated hardware accelerators can be achieved as was
done with the Eyeriss chip [61].

Finally, these frameworks are a valuable source of workloads
for hardware researchers. They can be used to drive experi-
mental designs for different workloads, for profiling different
workloads and for exploring hardware-software trade-offs.

B. Models

Pretrained DNN models can be downloaded from various
websites [56–59] for the various different frameworks. It should
be noted that even for the same DNN (e.g., AlexNet) the
accuracy of these models can vary by around 1% to 2%
depending on how the model was trained, and thus the results
do not always exactly match the original publication.

C. Popular Datasets for Classification

It is important to factor in the difficulty of the task when
comparing different DNN models. For instance, the task of
classifying handwritten digits from the MNIST dataset [62]
is much simpler than classifying an object into one of 1000
classes as is required for the ImageNet dataset [14](Fig. 16).
It is expected that the size of the DNNs (i.e., number of
weights) and the number of MACs will be larger for the more
difficult task than the simpler task and thus require more
energy and have lower throughput. For instance, LeNet-5[48]
is designed for digit classification, while AlexNet[3], VGG-
16[50], GoogLeNet[51], and ResNet[15] are designed for the
1000-class image classification.

There are many AI tasks that come with publicly available
datasets in order to evaluate the accuracy of a given DNN.
Public datasets are important for comparing the accuracy of
different approaches. The simplest and most common task
is image classification, which involves being given an entire
image, and selecting 1 of N classes that the image most likely
belongs to. There is no localization or detection.

MNIST is a widely used dataset for digit classification
that was introduced in 1998 [62]. It consists of 28×28 pixel
grayscale images of handwritten digits. There are 10 classes
(for 10 digits) and 60,000 training images and 10,000 test
images. LeNet-5 was able to achieve an accuracy of 99.05%
when MNIST was first introduced. Since then the accuracy has
increased to 99.79% using regularization of neural networks
with dropconnect [63]. Thus, MNIST is now considered a fairly
easy dataset.

CIFAR is a dataset that consists of 32×32 pixel colored
images of of various objects, which was released in 2009 [64].
CIFAR is a subset of the 80 million Tiny Image dataset [65].
CIFAR-10 is composed of 10 mutually exclusive classes. There
are 50,000 training images (5000 per class) and 10,000 test
images (1000 per class). A two-layer convolutional deep belief
network was able to achieve 64.84% accuracy on CIFAR-10
when it was first introduced [66]. Since then the accuracy has
increased to 96.53% using fractional max pooling [67].

ImageNet is a large scale image dataset that was first
introduced in 2010; the dataset stabilized in 2012 [14]. It
contains images of 256×256 pixel in color with 1000 classes.
The classes are defined using the WordNet as a backbone to
handle ambiguous word meanings and to combine together
synonyms into the same object category. In otherwords, there
is a hierarchy for the ImageNet categories. The 1000 classes
were selected such that there is no overlap in the ImageNet
hierarchy. The ImageNet dataset contains many fine-grained
categories including 120 different breeds of dogs. There are
1.3M training images (732 to 1300 per class), 100,000 testing
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Metrics LeNet AlexNet Overfeat VGG GoogLeNet ResNet
5 fast 16 v1 50

Top-5 error† n/a 16.4 14.2 7.4 6.7 5.3
Top-5 error (single crop)† n/a 19.8 17.0 8.8 10.7 7.0

Input Size 28×28 227×227 231×231 224×224 224×224 224×224
# of CONV Layers 2 5 5 13 57 53

Depth in # of CONV Layers 2 5 5 13 21 49
Filter Sizes 5 3,5,11 3,5,11 3 1,3,5,7 1,3,7

# of Channels 1, 20 3-256 3-1024 3-512 3-832 3-2048
# of Filters 20, 50 96-384 96-1024 64-512 16-384 64-2048

Stride 1 1,4 1,4 1 1,2 1,2
Weights 2.6k 2.3M 16M 14.7M 6.0M 23.5M
MACs 283k 666M 2.67G 15.3G 1.43G 3.86G

# of FC Layers 2 3 3 3 1 1
Filter Sizes 1,4 1,6 1,6,12 1,7 1 1

# of Channels 50, 500 256-4096 1024-4096 512-4096 1024 2048
# of Filters 10, 500 1000-4096 1000-4096 1000-4096 1000 1000

Weights 58k 58.6M 130M 124M 1M 2M
MACs 58k 58.6M 130M 124M 1M 2M

Total Weights 60k 61M 146M 138M 7M 25.5M
Total MACs 341k 724M 2.8G 15.5G 1.43G 3.9G

Pretrained Model Website [56]‡ [57, 58] n/a [57–59] [57–59] [57–59]
TABLE II

SUMMARY OF POPULAR DNNS [3, 15, 48, 50, 51]. †ACCURACY IS MEASURED BASED ON TOP-5 ERROR ON IMAGENET [14]. ‡THIS VERSION OF LENET-5
HAS 431K WEIGHTS FOR THE FILTERS AND REQUIRES 2.3M MACS PER IMAGE, AND USES RELU RATHER THAN SIGMOID.

MNIST ImageNet 

Fig. 16. MNIST (10 classes, 60k training, 10k testing) [62] vs. ImageNet
(1000 classes, 1.3M training, 100k testing)[14] dataset.

images (100 per class) and 50,000 validation images (50 per
class).

The accuracy of the ImageNet Challenge are reported using
two metrics: Top-5 and Top-1 error. Top-5 error means that if
any of the top five scoring categories are the correct category,
it is counted as a correct classification. The Top-1 requires
that the top scoring category be correct. In 2012, the winner
of the ImageNet Challenge (AlexNet) was able to achieve an
accuracy of 83.6% for the top-5 (which is substantially better
than the 73.8% which was second place that year that did not
use DNNs); it achieved 61.9% on the top-1 of the validation
set. In 2017, the highest accuracy was 97.7% for the top-5.

In summary of the various image classification datasets, it
is clear that MNIST is a fairly easy dataset, while ImageNet
is a challenging one with a wider coverage of classes. Thus
in terms of evaluating the accuracy of a given DNN, it is
important to consider that dataset upon which the accuracy is
measured.

D. Datasets for Other Tasks

Since the accuracy of the state-of-the-art DNNs are perform-
ing better than human-level accuracy on image classification
tasks, the ImageNet Challenge has started to focus on more
difficult tasks such as single-object localization and object
detection. For single-object localization, the target object must

be localized and classified (out of 1000 classes). The DNN
outputs the top five categories and top five bounding box
locations. There is no penalty for identifying an object that
is in the image but not included in the ground truth. For
object detection, all objects in the image must be localized
and classified (out of 200 classes). The bounding box for all
objects in these categories must be labeled. Objects that are
not labeled are penalized as are duplicated detections.

Beyond ImageNet, there are also other popular image
datasets for computer vision tasks. For object detection, there
is the PASCAL VOC (2005-2012) dataset that contains 11k
images representing 20 classes (27k object instances, 7k of
which has detailed segmentation) [68]. For object detection,
segmentation and recognition in context, there is the MS COCO
dataset with 2.5M labeled instances in 328k images (91 object
categories) [69]; compared to ImageNet, COCO has fewer
categories but more instances per category, which is useful for
precise 2-D localization. COCO also has more labeled instances
per image to potentially help with contextual information.

Most recently even larger scale datasets have been made
available. For instance, Google has an Open Images dataset
with over 9M images [70], spanning 6000 categories. There is
also a YouTube dataset with 8M videos (0.5M hours of video)
covering 4800 classes [71]. Google also released an audio
dataset comprised of 632 audio event classes and a collection
of 2M human-labeled 10-second sound clips [72]. These large
datasets will be evermore important as DNNs become deeper
with more weight parameters to train.

Undoubtedly, both larger datasets and datasets for new
domains will serve as important resources for profiling and
exploring the efficiency of future DNN engines.

V. HARDWARE FOR DNN PROCESSING

Due to the popularity of DNNs, many recent hardware
platforms have special features that target DNN processing. For
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instance, the Intel Knights Landing CPU features special vector
instructions for deep learning; the Nvidia PASCAL GP100
GPU features 16-bit floating point (FP16) arithmetic support
to perform two FP16 operations on a single precision core for
faster deep learning computation. Systems have also been built
specifically for DNN processing such as Nvidia DGX-1 and
Facebook’s Big Basin custom DNN server [73]. DNN inference
has also been demonstrated on various embedded System-on-
Chips (SoC) such as Nvidia Tegra and Samsung Exynos as
well as FPGAs. Accordingly, it’s important to have a good
understanding of how the processing is being performed on
these platforms, and how application-specific accelerators can
be designed for DNNs for further improvement in throughput
and energy efficiency.

The fundamental component of both the CONV and FC lay-
ers are the multiply-and-accumulate (MAC) operations, which
can be easily parallelized. In order to achieve high performance,
highly-parallel compute paradigms are very commonly used,
including both temporal and spatial architectures as shown in
Fig. 17. The temporal architectures appear mostly in CPUs
or GPUs, and employ a variety of techniques to improve
parallelism such as vectors (SIMD) or parallel threads (SIMT).
Such temporal architecture use a centralized control for a large
number of ALUs. These ALUs can only fetch data from the
memory hierarchy and cannot communicate directly with each
other. In contrast, spatial architectures use dataflow processing,
i.e., the ALUs form a processing chain so that they can pass data
from one to another directly. Sometimes each ALU can have
its own control logic and local memory, called a scratchpad or
register file. We refer to the ALU with its own local memory as
a processing engine (PE). Spatial architectures are commonly
used for DNNs in ASIC and FPGA-based designs. In this
section, we will discuss the different design strategies for
efficient processing on these different platforms, without any
impact on accuracy (i.e., all approaches in this section produce
bit-wise identical results); specifically,

• For temporal architectures such as CPUs and GPUs, we
will discuss how computational transforms on the kernel
can reduce the number of multiplications to increase
throughput.

• For spatial architectures used in accelerators, we will
discuss how dataflows can increase data reuse from low
cost memories in the memory hierarchy to reduce energy
consumption.

A. Accelerate Kernel Computation on CPU and GPU Platforms

CPUs and GPUs use parallelizaton techniques such as SIMD
or SIMT to perform the MACs in parallel. All the ALUs share
the same control and memory (register file). On these platforms,
both the FC and CONV layers are often mapped to a matrix
multiplication (i.e., the kernel computation). Fig. 18 shows how
a matrix multiplication is used for the FC layer. The height of
the filter matrix is the number of filters and the width is the
number of weights per filter (input channels (C) × width (W )
× height (H), since R = W and S = H in the FC layer);
the height of the input feature maps matrix is the number of
activations per input feature map (C × W × H), and the
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Fig. 17. Highly-parallel compute paradigms.
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(a) Matrix Vector multiplication is used when computing a single output
feature map from a single input feature map.
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(b) Matrix Multiplications is used when computing N output feature
maps from N input feature maps.

Fig. 18. Mapping to matrix multiplication for fully connected layers

width is the number of input feature maps (one in Fig. 18(a)
and N in Fig. 18(b)); finally, the height of the output feature
map matrix is the number of channels in the output feature
maps (M ), and the width is the number of output feature maps
(N ), where each output feature map of the FC layer has the
dimension of 1×1×number of output channels (M ).

The CONV layer in a DNN can also be mapped to a matrix
multiplication using a relaxed form of the Toeplitz matrix as
shown in Fig. 19. The downside for using matrix multiplication
for the CONV layers is that there is redundant data in the input
feature map matrix as highlighted in Fig. 19(a). This can lead
to either inefficiency in storage, or a complex memory access
pattern.

There are software libraries designed for CPUs (e.g., Open-
BLAS, Intel MKL, etc.) and GPUs (e.g., cuBLAS, cuDNN,
etc.) that optimize for matrix multiplications. The matrix
multiplication is tiled to the storage hierarchy of these platforms,
which are on the order of a few megabytes at the higher levels.
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The matrix multiplications on these platforms can be further
sped up by applying computational transforms to the data to
reduce the number of multiplications, while still giving the
same bit-wise result. Often this can come at a cost of increased
number of additions and a more irregular data access pattern.

Fast Fourier Transform (FFT) [10, 74] is a well known
approach, shown in Fig. 20 that reduces the number of
multiplications from O(N2

oN
2
f ) to O(N2

o log2No), where the
output size is No × No and the filter size is Nf × Nf . To
perform the convolution, we take the FFT of the filter and
input feature map, and then perform the multiplication in
the frequency domain; we then apply an inverse FFT to the
resulting product to recover the output feature map in the
spatial domain. However, there are several drawbacks to using
FFT: (1) the benefits of FFTs decrease with filter size; (2) the
size of the FFT is dictated by the output feature map size which
is often much larger than the filter; (3) the coefficients in the
frequency domain are complex. As a result, while FFT reduces
computation, it requires larger storage capacity and bandwidth.
Finally, a popular approach for reducing complexity is to make
the weights sparse, which will be discussed in Section VII-B2;
using FFTs makes it difficult for this sparsity to be exploited.

Several optimizations can be performed on FFT to make it
more effective for DNNs. To reduce the number of operations,
the FFT of the filter can be precomputed and stored. In addition,
the FFT of the input feature map can be computed once and
used to generate multiple channels in the output feature map.
Finally, since an image contains only real values, its Fourier
Transform is symmetric and this can be exploited to reduce
storage and computation cost.

Other approaches include Strassen [75] and Winograd [76],
which rearrange the computation such that the number of
multiplications reduce from O(N3) to O(N2.807) and by 2.25×
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Fig. 20. FFT to accelerate DNN.
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Fig. 21. Read and write access per MAC.

for a 3×3 filter, respectively, at the cost of reduced numeri-
cal stability, increased storage requirements, and specialized
processing depending on the size of the filter.

In practice, different algorithms might be used for different
layer shapes and sizes (e.g., FFT for filters greater than 5×5,
and Winograd for filters 3×3 and below). Existing platform
libraries, such as MKL and cuDNN, dynamically chose the
appropriate algorithm for a given shape and size [77, 78].

B. Energy-Efficient Dataflow for Accelerators

For DNNs, the bottleneck for processing is in the memory
access. Each MAC requires three memory reads (for filter
weight, fmap activation, and partial sum) and one memory
write (for the updated partial sum) as shown in Fig. 21. In the
worst case, all of the memory accesses have to go through the
off-chip DRAM, which will severely impact both throughput
and energy efficiency. For example, in AlexNet, to support its
724M MACs, nearly 3000M DRAM accesses will be required.
Furthermore, DRAM accesses require up to several orders of
magnitude higher energy than computation [79].

Accelerators, such as spatial architectures as shown in
Fig. 17, provide an opportunity to reduce the energy cost of
data movement by introducing several levels of local memory
hierarchy with different energy cost as shown in Fig. 22. This
includes a large global buffer with a size of several hundred
kilobytes that connects to DRAM, an inter-PE network that
can pass data directly between the ALUs, and a register file
(RF) within each processing element (PE) with a size of a
few kilobytes or less. The multiple levels of memory hierarchy
help to improve energy efficiency by providing low-cost data
accesses. For example, fetching the data from the RF or
neighbor PEs is going to cost 1 or 2 orders of magnitude
lower energy than from DRAM.

Accelerators can be designed to support specialized process-
ing dataflows that leverage this memory hierarchy. The dataflow
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decides what data gets read into which level of the memory
hierarchy and when are they getting processed. Since there is
no randomness in the processing of DNNs, it is possible to
design a fixed dataflow that can adapt to the DNN shapes and
sizes and optimize for the best energy efficiency. The optimized
dataflow minimizes access from the more energy consuming
levels of the memory hierarchy. Large memories that can store
a significant amount of data consume more energy than smaller
memories. For instance, DRAM can store gigabytes of data, but
consumes two orders of magnitude higher energy per access
than a small on-chip memory of a few kilobytes. Thus, every
time a piece of data is moved from an expensive level to a
lower cost level in terms of energy, we want to reuse that piece
of data as much as possible to minimize subsequent accesses
to the expensive levels. The challenge, however, is that the
storage capacity of these low cost memories are limited. Thus
we need to explore different dataflows that maximize reuse
under these constraints.

For DNNs, we investigate dataflows that exploit three forms
of input data reuse (convolutional, feature map and filter) as
shown in Fig. 23. For convolutional reuse, the same input
feature map activations and filter weights are used within
a given channel, just in different combinations for different
weighted sums. For feature map reuse, multiple filters are
applied to the same feature map, so the input feature map
activations are used multiple times across filters. Finally, for
filter reuse, when multiple input feature maps are processed at
once (referred to as a batch), the same filter weights are used
multiple times across input features maps.

If we can harness the three types of data reuse by storing
the data in the local memory hierarchy and accessing them
multiple times without going back to the DRAM, it can save
a significant amount of DRAM accesses. For example, in
AlexNet, the number of DRAM reads can be reduced by up to
500× in the CONV layers. The local memory can also be used
for partial sum accumulation, so they do not have to reach
DRAM. In the best case, if all data reuse and accumulation
can be achieved by the local memory hierarchy, the 3000M
DRAM accesses in AlexNet can be reduced to only 61M.

The operation of DNN accelerators is analogous to that of
general-purpose processors as illustrated in Fig. 24 [81]. In
conventional computer systems, the compiler translates the
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Fig. 23. Data reuse opportunities in DNNs [80].
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Fig. 24. An analogy between the operation of DNN accelerators (texts in
black) and that of general-purpose processors (texts in red). Figure adopted
from [81].

program into machine-readable binary codes for execution
given the hardware architecture (e.g., x86 or ARM); in the
processing of DNNs, the mapper translates the DNN shape
and size into a hardware-compatible computation mapping
for execution given the dataflow. While the compiler usually
optimizes for performance, the mapper optimizes for energy
efficiency.

The following taxonomy (Fig. 25) can be used to classify
the DNN dataflows in recent works [82–93] based on their
data handling characteristics [80]:

1) Weight stationary (WS): The weight stationary dataflow
is designed to minimize the energy consumption of reading
weights by maximizing the accesses of weights from the register
file (RF) at the PE (Fig. 25(a)). Each weight is read from
DRAM into the RF of each PE and stays stationary for further
accesses. The processing runs as many MACs that use the
same weight as possible while the weight is present in the RF;
it maximizes convolutional and filter reuse of weights. The
inputs and partial sums must move through the spatial array
and global buffer. The input fmap activations are broadcast to
all PEs and then the partial sums are spatially accumulated
across the PE array.

One example of previous work that implement weight
stationary dataflow is nn-X, or neuFlow [85], which uses
eight 2-D convolution engines for processing a 10×10 filter.
There are total 100 MAC units, i.e. PEs, per engine with each
PE having a weight that stays stationary for processing. The

wjiang8
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Fig. 25. Dataflows for DNNs [80].

input fmap activations are broadcast to all MAC units and the
partial sums are accumulated across the MAC units. In order to
accumulate the partial sums correctly, additional delay storage
elements are required, which are counted into the required size
of local storage. Other weight stationary examples are found
in [82–84, 86, 87].

2) Output stationary (OS): The output stationary dataflow is
designed to minimize the energy consumption of reading and
writing the partial sums (Fig. 25(b)). It keeps the accumulation
of partial sums for the same output activation value local in the
RF. In order to keep the accumulation of partial sums stationary
in the RF, one common implementation is to stream the input
activations across the PE array and broadcast the weight to all
PEs in the array.

One example that implements the output stationary dataflow
is ShiDianNao [89], where each PE handles the processing for
each output activation value by fetching the corresponding input
activations from neighboring PEs. The PE array implements
dedicated networks to pass data horizontally and vertically.
Each PE also has data delay registers to keep data around for
the required amount of cycles. At the system level, the global
buffer streams the input activations and broadcasts the weights
into the PE array. The partial sums are accumulated inside
each PE and then get streamed out back to the global buffer.
Other examples of output stationary are found in [88, 90].

There are multiple possible variants of output stationary as
shown in Fig. 26 since the output activations that get processed
at the same time can come from different dimensions. For
example, the variant OSA targets the processing of CONV
layers, and therefore focuses on the processing of output
activations from the same channel at a time in order to
maximize data reuse opportunities. The variant OSC targets
the processing of FC layers, and focuses on generating output
activations from all different channels, since each channel only
has one output activation. The variant OSB is something in
between OSA and OSC . Example of variants OSA, OSB , and
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Fig. 26. Variations of output stationary [80].

OSC are [89], [88], and [90], respectively.
3) No local reuse (NLR): While small register files are

efficient in terms of energy (pJ/bit), they are inefficient in terms
of area (µm2/bit). In order to maximize the storage capacity,
and minimize the off-chip memory bandwidth, no local storage
is allocated to the PE and instead all that area is allocated
to the global buffer to increase its capacity (Fig. 25(c)). The
no local reuse dataflow differs from the previous dataflows in
that nothing stays stationary inside the PE array. As a result,
there will be increased traffic on the spatial array and to the
global buffer for all data types. Specifically, it has to multicast
the activations, single-cast the filter weights, and then spatially
accumulate the partial sums across the PE array.

In an example of the no local reuse dataflow from
UCLA [91], the filter weights and input activations are read
from the global buffer, processed by the MAC units with custom
adder trees that can complete the accumulation in a single cycle,
and the resulting partial sums or output activations are then put
back to the global buffer. Another example is DianNao [92],
which also reads input activations and filter weights from
the buffer, and processes them through the MAC units with
custom adder trees. However, DianNao implements specialized
registers to keep the partial sums in the PE array, which helps
to further reduce the energy consumption of accessing partial
sums. Another example of no local reuse dataflow is found
in [93].

4) Row stationary (RS): A row stationary dataflow is
proposed in [80], which aims to maximize the reuse and
accumulation at the RF level for all types of data (weights,
pixels, partial sums) for the overall energy efficiency. This
differs from WS or OS dataflows, which optimize for only
weights and partial sums, respectively.

The row stationary dataflow assigns the processing of a
1-D row convolution into each PE for processing as shown
in Fig. 27. It keeps the row of filter weights stationary inside
the RF of the PE and then streams the input activations into
the PE. The PE does the MACs for each sliding window at a
time, which uses just one memory space for the accumulation
of partial sums. Since there are overlaps of input activations
between different sliding windows, the input activations can
then be kept in the RF and get reused. By going through all the
sliding windows in the row, it completes the 1-D convolution
and maximize the data reuse and local accumulation of data
in this row.
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Fig. 27. 1-D Convolutional reuse within PE for Row Stationary Dataflow [80].
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With each PE processing a 1-D convolution, multiple
PEs can be aggregated to complete the 2-D convolution as
shown in Fig. 28. For example, to generate the first row of
output activations with a filter having three rows, three 1-D
convolutions are required. Therefore, we can use three PEs in
a column, each running one of the three 1-D convolutions. The
partial sums are further accumulated vertically across the three
PEs to generate the first output row. To generate the second
row of output, we use another column of PEs, where three
rows of input activations are shifted down by one row, and use
the same rows of filters to perform the three 1-D convolutions.
Additional columns of PEs are added until all rows of the
output are completed (i.e., the number of PE columns equals
the number of output rows).

This 2-D array of PEs enables other forms of reuse to reduce
accesses to the more expensive global buffer. For example, each
filter row is reused across multiple PEs horizontally. Each row
of input activations is reused across multiple PEs diagonally.
And each row of partial sums are further accumulated across
the PEs vertically. Therefore, 2-D convolutional data reuse and
accumulation are maximized inside the 2-D PE array.

To address the high-dimensional convolution of the CONV
layer (i.e., multiple fmaps, filters, and channels), multiple rows
can be mapped onto the same PE as shown in Fig. 29. The
2-D convolution is mapped to a set of PEs, and the additional
dimensions are handled by interleaving or concatenating the
additional data. For filter reuse within the PE, different rows
of fmaps are concatenated and run through the same PE
as a 1-D convolution. For input fmap reuse within the PE,
different filter rows are interleaved and run through the same
PE as a 1-D convolution. Finally, to increase local partial sum
accumulation within the PE, filter rows and fmap rows from
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different channels are interleaved, and run through the same PE
as a 1-D convolution. The partial sums from different channels
then naturally get accumulated inside the PE.

The number of filters, channels, and fmaps that can be
processed at the same time is programmable, and there exists an
optimal mapping for the best energy efficiency, which depends
on the shape configuration of the DNN as well as the hardware
resources provided, e.g., the number of PEs and the size of the
memory in the hierarchy. Since all of the variables are known
before runtime, it is possible to build a compiler (i.e., mapper)
to perform this optimization off-line to configure the hardware
for different mappings of the RS dataflow for different DNNs
as shown in Fig. 30.

One example that implements the row stationary dataflow
is Eyeriss [94]. It consists of a 14×12 PE array, a 108KB
global buffer, ReLU and fmap compression units as shown
in Fig. 31. The chip communicates with the off-chip DRAM
using a 64-bit bidirectional data bus to fetch data into the
global buffer. The global buffer then streams the data into the
PE array for processing.

In order to support the RS dataflow, two problems need to be
solved in the hardware design. First, how can the fixed-size PE
array accommodate different layer shapes? Second, although
the data will be passed in a very specific pattern, it still changes
with different shape configurations. How can the fixed design
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pass data in different patterns?
Two mapping strategies can be used to solve the first problem

as shown in Fig. 32. First, replication can be used to map shapes
that do not use up the entire PE array. For example, in the
third to fifth layers of AlexNet, each 2-D convolution only uses
a 13×3 PE array. This structure is then replicated four times,
and runs different channels and filters in each replication. The
second strategy is called folding. For example, in the second
layer of AlexNet, it requires a 27×5 PE array to complete the
2-D convolution. In order to fit it into the 14×12 physical PE
array, it is folded into two parts, 14×5 and 13×5, and each
are vertically mapped into the physical PE array. Since not all
PEs are used by the mapping, the unused PEs can be clock
gated to save energy consumption.

A custom multicast network is used to solve the second
problem about flexible data delivery. The simplest way to pass
data to multiple destinations is to broadcast the data to all PEs
and let each PE decide if it has to process the data or not.
However, it is not very energy efficient especially when the
size of PE array is large. Instead, a multicast network is used
to send data to only the places where it is needed.

5) Energy comparison of different dataflows: To evaluate
and compare different dataflows, the same total hardware area
and number of PEs (256) are used in the simulation of a spatial
architecture for all dataflows. The local memory (register file) at
each processing element (PE) is on the order of 0.5 – 1.0kB and
a shared memory (global buffer) is on the order of 100 – 500kB.
The sizes of these memories are selected to be comparable to
a typical accelerator for multimedia processing, such as video
coding [95]. The memory sizes are further adjusted for the

needs of each dataflow under the same area constraint. For
example, since the no local reuse dataflow does not require any
RF in PE, it is allocated with a much larger global buffer. The
simulation uses the layer configurations from AlexNet with a
batch size of 16. The simulation also takes into account the
fact that accessing different levels of the memory hierarchy
requires different energy cost.

Fig. 33 compares the chip and DRAM energy consumption
of each dataflow for the CONV layers of AlexNet with a
batch size of 16. The WS and OS dataflows have the lowest
energy consumption for accessing weights and partial sums,
respectively. However, the RS dataflow has the lowest total
energy consumption since it optimizes for the overall energy
efficiency instead of only for a certain data type.

Fig. 33(a) shows the same results with breakdown in terms of
memory hierarchy. The RS dataflow consumes the most energy
in the RF, since by design most of the accesses have been
moved to the lowest level of the memory hierarchy. This helps
to achieve the lowest total energy consumption since RF has
the lowest energy per access. The NLR dataflow has the lowest
energy consumption at the DRAM level, since it has a much
larger global buffer and thus higher on-chip storage capacity
compared to others. However, most of the data accesses in
the NLR dataflow is from the global buffer, which still has a
relatively large energy consumption per access compared to
accessing data from RF or inside the PE array. As a result, the
overall energy consumption of the NLR dataflow is still fairly
high. Overall, RS dataflow uses 1.4× to 2.5× lower energy
than other dataflows.

Fig. 34 shows the energy efficiency between different
dataflows in the FC layers of AlexNet with a batch size of 16.
Since there is not as much data reuse in the FC layers as in
the CONV layers, all dataflows spend a significant amount of
energy on reading weights. However, RS dataflow still has the
lowest energy consumption because it optimizes for the energy
of accessing input activations and partial sums. For the OS
dataflows, OSC now consumes lower energy than OSA since
it is designed for the FC layers. Overall, RS still consumes
1.3× lower energy compared to other dataflows at the batch
size of 16.

Fig. 35 shows the RS dataflow design with energy breakdown
in terms of different layers of AlexNet. In the CONV layers, the
energy is mostly consumed by the RF, while in the FC layers,
the energy is mostly consumed by DRAM. However, most
of the energy is consumed by the CONV layers, which takes
around 80% of the energy. As recent DNN models go deeper
with more CONV layers, the ratio between number of CONV
and FC layers only gets larger. Therefore, moving forward,
significant effort should be placed on energy optimizations for
CONV layers.

Finally, up until now, we have been looking at architec-
tures with relatively limited storage on the order of a few
hundred kilobytes. With much larger storage on the order of
a few megabytes, additional dataflows can be considered. For
example, Fused-Layer looks at dataflow optimizations across
layers [96].
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Fig. 33. Comparison of energy efficiency between different dataflows in the
CONV layers of AlexNet with a batch size of 16 [3]: (a) breakdown in terms
of storage levels and ALU, (b) breakdown in terms of data types. OSA, OSB

and OSC are three variants of the OS dataflow that are commonly seen in
different implementations [80].
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Fig. 34. Comparison of energy efficiency between different dataflows in the
FC layers of AlexNet with a batch size of 16 [80].

VI. NEAR-DATA PROCESSING

The previous section highlighted that data movement domi-
nates energy consumption. While spatial architectures distribute
the on-chip memory such that it is closer to the computation
(e.g., into the PE), there have also been efforts to bring the
off-chip high density memory closer to the computation or to
integrate the computation into the memory itself; the latter is
often referred to as processing-in-memory or logic-in-memory.
In embedded systems, there have also been efforts to bring the
computation into the sensor where the data is first collected.
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Fig. 35. Energy breakdown across layers of the AlexNet [80]. RF energy
dominates in convolutional layers. DRAM energy dominates in the fully
connected layer. Convolutional layer dominate energy consumption.

In this section, we will discuss how moving compute and data
closer to reduce data movement (i.e., near-data processing) can
be achieved using mixed-signal circuit design and advanced
memory technologies.

Many of these works use analog processing which has the
drawback of increased sensitivity to circuit and device non-
idealities. Consequentially, the computation is often performed
at reduced precision, which can be accounted for during
the training of the DNNs using the techniques discussed in
Section VII. Another factor to take into consideration is that
DNNs are often trained in the digital domain; thus for analog
processing, there is an additional overhead cost for analog-
to-digital conversion (ADC) and digital-to-analog conversion
(DAC).

A. DRAM

Advanced memory technology can reduce the access energy
for high density memories such as DRAMs. For instance,
embedded DRAM (eDRAM) brings high density memory on-
chip to avoid the high energy cost of switching off-chip
capacitance [97]; eDRAM is 2.85× higher density than SRAM
and 321× more energy efficient than DRAM (DDR3) [93].
eDRAM also offers higher bandwidth and lower latency
compared to DRAM. In DNN processing, eDRAM can be used
to store tens of megabytes of weights and activations on-chip
to avoid off-chip access, as demonstrated in DaDianNao [93].
The downside of eDRAM is that it has lower density than
off-chip DRAM and can increase the cost of the chip.

Rather than integrating DRAM into the chip itself, the
DRAM can also be stacked on top of the chip using through
silicon vias (TSV). This technology is often referred to as 3-D
memory, and has been commercialized in the form of Hybrid
Memory Cube (HMC) [98] and High Bandwidth Memory
(HBM) [99]. 3-D memory delivers an order of magnitude higher
bandwidth and reduces access energy by up to 5× relative to
existing 2-D DRAMs, as TSV have lower capacitance than
typical off-chip interconnects. Recent works have explored the
use of HMC for efficient DNN processing in a variety of ways.
For instance, Neurocube [100] integrates SIMD processors into
the logic die of the HMC to bring the memory and computation
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closer together. Tetris [101] explores the use of HMC with
the Eyeriss spatial architecture and row stationary dataflow.
It proposes allocating more area to computation than on-chip
memory (i.e., larger PE array and smaller global buffer) in
order to exploit the low energy and high throughput properties
of the HMC. It also adapts the dataflow to account for the
HMC memory and smaller on-chip memory. Tetris achieves
a 1.5× reduction in energy consumption and 4.1× increase
in throughput over a baseline system with conventional 2-D
DRAM.

B. SRAM

Rather than bringing the memory near the compute, recent
work has also investigated bringing the compute into the
memory. For instance, the multiply and accumulate operation
can be directly integrated into the bit-cells of an SRAM
array [102], as shown in Fig. 36(a). In this work, a 5-bit
DAC is used to drive the word line (WL) to an analog voltage
that represents the feature vector, while the bit-cells store the
binary weights ±1. The bit-cell current (IBC) is effectively
a product of the value of the feature vector and the value of
the weight stored in the bit-cell; the currents from the bit-
cells within a column add together to discharge the bitline
(VBL). This approach gives 12× energy savings compared to
reading the 1-bit weights from the SRAM and performing the
computation separately. To counter circuit non-idealities, the
DAC accounts for the non-linear bit-line discharge with respect
to the WL voltage, and boosting is used to combine the weak
classifiers that are susceptible to device variations to form a
strong classifier [103].

C. Non-volatile Resistive Memories

The multiply and accumulate operation can also be directly
integrated into advanced non-volatile high density memories
by using them as programmable resistive elements, commonly
referred to as memristors [105]. Specifically, a multiplication
is performed with the resistor’s conductance as the weight, the

voltage as the input, and the current as the output as shown in
Fig. 36(b). The addition is done by summing the currents of
different memristors with Kirchhoff’s current law. This is the
ultimate form of a weight stationary dataflow, as the weights
are always held in place. The advantages of this approach
include reduced energy consumption since the computation
is embedded within memory which reduces data movement,
and increased density since memory and computation can be
densely packed with a similar density to DRAM [106].8

There are several popular candidates for non-volatile resistive
memory devices including phase change memory (PCM),
resistive RAM (RRAM or ReRAM), conductive bridge RAM
(CBRAM), and spin transfer torque magnetic RAM (STT-
MRAM) [107]. These devices have different trade-offs in terms
of endurance (i.e., how many times it can be written), retention
time, write current, density (i.e., cell size), variations and speed.

Processing with non-volatile resistive memories has several
drawbacks as described in [108]. First, it suffers from the
reduced precision and ADC/DAC overhead of analog process-
ing described earlier. Second, the array size is limited by the
wires that connect the resistive devices; specifically, wire energy
dominates for large arrays (e.g., 1k×1k), and the IR drop along
wire can degrade the read accuracy. Third, the write energy
to program the resistive devices can be costly, in some cases
requiring multiple pulses. Finally, the resistive devices can also
suffer from device-to-device and cycle-to-cycle variations with
non-linear conductance across the conductance range.

There have been several recent works that explore the use of
memristors for DNNs. ISAAC [104] replaces the eDRAM in
DaDianNao with memristors. To address the limited precision
support, ISAAC computes a 16-bit dot product operation with
8 memristors each storing 2-bits; a 1-bit×2-bit multiplication
is performed at each memristor, where a 16-bit input requires
16 cycles to complete. In other words, the ISAAC architecture
trades off area and time for increased precision. Finally, ISAAC
arranges its 25.1M memristors in a hierarchical structure to
avoid issues with large arrays. PRIME [109] also replaces the
DRAM main memory with memristors; specifically, it uses
256×256 memristor arrays that can be configured for 4-bit
multi-level cell computation or 1-bit single level cell storage.
It should be noted that results from ISAAC and PRIME are
obtained from simulations. The task of actually fabricating
large memristors arrays is still very much a research challenge;
for instance, [110] uses a fabricated 12×12 memristor array
to demonstrate a linear classifier.

D. Sensors

In certain applications, such as image processing, the data
movement from the sensor itself can account for a significant
portion of the system energy consumption. Thus there has
also been research on performing the computation as close
as possible to the sensor. In particular, much of the work
focuses on moving the computation into the analog domain to
avoid using the ADC within the sensor, which accounts for a
significant portion of the sensor power. However, as mentioned

8The resistive devices can be inserted between the cross-point of two wires
and in certain cases can avoid the need for an access transistor.
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earlier, lower precision is required for analog computation due
to circuit non-idealities.

In [111], the matrix multiplication is integrated into the
ADC, where the most significant bits of the multiplications
are performed using switched capacitors in an 8-bit successive
approximation format. This is extended in [112] to not only
perform the multiplications, but also the accumulations in the
analog domain. In this work, it is assumed that 3-bits and
6-bits are sufficient to represent the weights and activations,
respectively. This reduces the number of ADC conversions in
the sensor by 21×. RedEye [113] takes this approach even
further by performing the entire convolution layer (including
convolution, max pooling and quantization) in the analog
domain at the sensor. It should be noted that [111] and [112]
report measured results from fabricated test chips, while results
in [113] are from simulations.

It is also feasible to embed the computation not just before
the ADC, but into the sensor itself. For instance, in [114] an
Angle Sensitive Pixels sensor is used to compute the gradient
of the input, which along with compression, reduces the data
movement from the sensor by 10×. In addition, since the
first layer of the DNN often outputs a gradient-like feature
map, it maybe possible to skip the computations in the first
layer, which further reduces energy consumption as discussed
in [115, 116].

VII. CO-DESIGN OF DNN MODELS AND HARDWARE

In earlier work, the DNN models were designed to maximize
accuracy without much consideration of the implementation
complexity. However, this can lead to designs that are chal-
lenging to implement and deploy. To address this, recent
work has shown that DNN models and hardware can be co-
designed to jointly maximize accuracy and throughput, while
minimizing energy and cost, which increases the likelihood of
adoption. In this section, we will highlight various efforts that
have been made towards the co-design of DNN models and
hardware. Note that unlike Section V, the techniques discussed
in this section can affect the accuracy; thus, the goal is to
not only substantially reduce energy consumption and increase
throughput, but also to minimize any degradation in accuracy.

The co-design approaches can be loosely grouped into the
following categories:

• Reduce precision of operations and operands. This in-
cludes going from floating point to fixed point, reducing
the bitwidth, non-linear quantization and weight sharing.

• Reduce number of operations and model size. This
includes techniques such as compression, pruning and
compact network architectures.

A. Reduce Precision

Quantization involves mapping data to a smaller set of
quantization levels. The ultimate goal is to minimize the error
between the reconstructed data from the quantization levels and
the original data. The number of quantization levels reflects the
precision and ultimately the number of bits required to represent
the data (usually log2 of the number of levels); thus, reduced
precision refers to reducing the number of levels, and thus

(a) Linear Quantization (b) Log Quantization

(c) Non-Linear Quantization

Fig. 37. Various methods of quantization (Figures from [117, 118]).

the number of bits. The benefits of reduced precision include
reduced storage cost and/or reduced computation requirements.

There are several ways to map the data to quantization levels.
The simplest method is a linear mapping with uniform distance
between each quantization level (Fig. 37(a)). Another approach
is to use a simple mapping function such as a log function
(Fig. 37(b)) where the distance between the levels varies; this
mapping can often be implemented with simple logic such as a
shift. Alternatively, a more complex mapping function can be
used where the quantization levels are determined or learned
from the data (Fig. 37(c)), e.g., using k-means clustering; for
this approach, the mapping is usually implemented with a look
up table.

Finally, the quantization can be fixed (i.e., the same method
of quantization is used for all data types and layers, filters, and
channels in the network); or it can be variable (i.e., different
methods of quantization can be used for weights and activations,
and different layers, filters, and channels in the network).

Reduced precision research initially focused on reducing
the precision of the weights rather than the activations, since
weights directly increase the storage capacity requirement,
while the impact of activations on storage capacity depends on
the network architecture and dataflow. However, more recent
works have also started to look at the impact of quantization
on activations. Most reduced precision research also focuses
on reducing the precision for inference rather than training
(with some exceptions [88, 119, 120]) due to the sensitivity of
the gradients to quantization.

The key techniques used in recent work to reduce precision
are summarized in Table III; both linear and non-linear
quantization applied to weights and activations are explored.
The impact on accuracy is reported relative to a baseline
precision of 32-bit floating point, which is the default precision
used on platforms such as GPUs and CPUs.

1) Linear quantization: The first step of reducing precision
is usually to convert values and operations from floating point
to fixed point. A 32-bit floating point number, as shown in
Fig. 38(a), is represented by (−1)s ×m× 2(e−127), where s
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Fig. 38. Various methods of number representations.

is the sign bit, e is the 8-bit exponent, and m is the 23-bit
mantissa, and covers the range of 10−38 to 1038.

An N-bit fixed point number is represented by (−1)s×m×
2−f , where s is the sign bit, m is the (N-1)-bit mantissa, and
f determines the location of the decimal point and acts as a
scale factor. For instance, for an 8-bit integer, when f = 0,
the dynamic range is -128 to 127, whereas when f = 10, the
dynamic range is -0.125 to 0.124023438. Dynamic fixed point
representation allows f to vary based on the desired dynamic
range as shown in Fig. 38(b). This is useful for DNNs, since
the dynamic range of the weights and activations can be quite
different. In addition, the dynamic range can also vary across
layers and layer types (e.g., convolutional vs. fully connected).
Using dynamic fixed point, the bitwidth can be reduced to 8
bits for the weights and 10 bits for the activations without any
fine-tuning of the weights [121]; with fine-tuning, both weights
and activations can reach 8-bits [122].

Using 8-bit fixed point has the following impact on energy
and area [79]:

• An 8-bit fixed point add consumes 3.3× less energy
(3.8× less area) than a 32-bit fixed point add, and 30×
less energy (116× less area) than a 32-bit floating point
add. The energy and area of a fixed-point add scales
approximately linearly with the number of bits.

• An 8-bit fixed point multiply consumes 15.5× less energy
(12.4× less area) than a 32-bit fixed point multiply,
and 18.5× less energy (27.5× less area) than a 32-bit
floating point multiply. The energy and area of a fixed-
point multiply scales approximately quadratically with the
number of bits.

Reducing the precision also reduces the energy and area cost
for storage, which is important since memory access and data
movement dominate energy consumption as described earlier.
The energy and area of the memory scale approximately linearly
with number of bits. It should be noted, however, that changing
from floating point to fixed point, without reducing bit-width,
does not reduce the energy or area cost of the memory.

For completeness, it should be noted that the precision of
the internal values of a fixed-point multiply and accumulate
(MAC) operation are typically higher than the weights and
activations. To guarantee no precision loss, weights and input
activations with N-bit fixed-point precision would require an
N-bit×N-bit multiplication which generates a 2N-bit output
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Activation  
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N x N 
multiply 

2N-bits 

2N+M-bits 
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(N-bits) 

Quantize 
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Fig. 39. Reducing the precision of multiply and accumulate (MAC).

product; that output would need to be accumulated with 2N+M-
bit precision, where M is determined based on the largest filter
size log2(C ×R× S from Fig. 9(b)), which is in the range of
10 to 16 bits for the popular DNNs described in Section III-B.
After accumulation, the precision of the final output activation
is typically reduced to N-bits [88, 121], as shown in Fig. 39.
The reduced output precision does not have a significant impact
on accuracy if the distribution of the weights and activations
are centered near zero such that the accumulation would not
move only in one direction; this is particularly true when batch
normalization is used.

The reduced precision is not only explored in research,
but has been used in recent commercial platforms for DNN
processing. For instance, Google’s Tensor Processing Unit
(TPU) which was announced in May 2016, was designed for
8-bit integer arithmetic [123]. Similarly, Nvidia’s PASCAL
GPU, which was announced in April 2016, also has 8-bit
integer instructions for deep learning inference [124]. In general
purpose platforms such as CPUs and GPUs, the main benefit
of using 8-bit computation is an increase in throughput, as
four 8-bit operations rather than one 32-bit operation can be
performed for a given clock cycle.

While general purpose platforms usually support 8-bit,
16-bit and/or 32-bit operations, it has been shown that the
minimum bit precision for DNNs can actually vary in a more
fine grained manner. For instance, the weight and activation
precision can vary between 4 and 9 bits for AlexNet across
different layers without significant impact on accuracy (i.e., a
change of less than 1%) [125, 126]. This fine-grained variation
can be exploited for increased throughput or reduced energy
consumption with specialized hardware. For instance, if bit-
serial processing is used, where the number of clock cycles to
complete an operation is proportional to the bitwidth, adapting
to fine-grain variations in bit precision can result in a 2.24×
speed up versus 16-bits [125]. Alternatively, a multiplier can
be designed such that its critical path reduces based on the bit
precision as fewer adders are needed to resolve the product;
this can be combined with voltage scaling for a 2.56× energy
savings versus 16-bits [126]. While these bit scaling results
are reported relative to 16-bit, it would be interesting to see
their impact relative to the maximum precision required across
layers (i.e., 9-bits for [125, 126]).

The precision can be reduced even more aggressively to a
single bit; this area of research is often referred to as binary nets.
BinaryConnect (BC) [127] introduced the concept of binary
weights (i.e., -1 and 1), where using a binary weight reduced
the multiplication in the MAC to addition and subtraction
only. This was later extended in Binarized Neural Networks
(BNN) [128] that uses binary weights and activations, which
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reduces the MAC to an XNOR. However, BC and BNN have
an accuracy loss of 19% and 29.8%, respectively [129].

In order to reduce this accuracy loss, Binary Weight
Nets (BWN) and XNOR-Nets introduced several significant
modifications to the DNN processing [129]. This includes
multiplying the outputs with a scale factor to recover the
dynamic range (i.e., the weights effectively become -w and
w, where w is the average of the absolute values of the
weights in the filter)9, keeping the first and last layers at 32-bit
floating point precision, and performing normalization before
convolution to reduce the dynamic range of the activations.
With these changes, BWN reduced the accuracy loss to 0.8%,
while XNOR-Nets reduced the loss to 11%. The loss of XNOR-
Net can be further reduced by increasing the precision of the
activations to be slightly larger than one bit. For instance,
Quantized Neural Networks (QNN) [119], DoReFa-Net [120],
and HWGQ-Net [130] allow the activations to have 2-bits,
while the weights remain at 1-bit; in HWGQ-Net, this reduces
the accuracy loss to 5.2%.

All the previously described binary nets limit the weights
to two values (-w and w); however, there may be benefits
for allowing weights to be zero (i.e., -w, 0, w). Although
this requires an additional bit per weight compared to binary
weights, the sparsity of the weights can be exploited to reduce
computation and storage cost, which can potentially cancel
out the cost of the additional bit. This is explored in Ternary
Weight Nets (TWN) [131] and then extended in Trained Ternary
Quantization (TTQ) where a different scale is trained for each
weight (i.e., -w1, 0, w2) for an accuracy loss of 0.6% [132],
assuming 32-bit floating point for the activations.

Hardware implementations for binary/ternary nets have
been explored in recent publications. YodaNN [133] uses
binary weights, while BRein [134] uses binary weights and
activations. Binary weights are also used in the compute
in SRAM work [102] described in Section VI. Finally, the
nominally spike-inspired TrueNorth chip can implement a
reduced precision neural network with binary activations and
ternary weights using TrueNorth’s quantized weight table [9].
These works tend not to support state-of-the-art DNN models
(with the exception of YodaNN).

2) Non-linear quantization: The previous works described
involve linear quantization where the levels are uniformly
spaced out. It has been shown that the distributions of the
weights and activations are not uniform [118, 135], and thus
a non-linear quantization can potentially improve accuracy.
Specifically, there have been two popular approaches taken
in recent works: (1) log domain quantization; (2) learned
quantization or weight sharing.

Log domain quantization If the quantization levels are
assigned based on a logarithmic distribution as shown in
Fig 37(b), the weights and activations are more equally
distributed across the different levels and each level is used
more efficiently resulting in less quantization error. For instance,
using 4 bits in linear quantization results in a 27.8% loss in
accuracy versus a 5% loss for log base-2 quantization for

9This can also be thought of as a form of weights sharing, where only two
weights are used per filter.
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VGG-16 [117]. Furthermore, when weights are quantized to
powers of two, the multiplication can be replaced with a bit-
shift [122, 135].10 Incremental Network Quantization (INQ)
can be used to further reduce the loss in accuracy by dividing
the large and small weights into different groups, and then
iteratively quantizing and re-training the weights [136].

Weight Sharing forces several weights to share a single value.
This reduces the number of unique weights in a filter or a
layer. One example is to group the weights by using a hashing
function and use one value for each group [137]. Alternatively,
the weights can be grouped by the k-means algorithm [118].
Both the shared weights and the indexes indicating which
weight to use at each position of the filter are stored. This
leads to a two step process to fetch the weight: (1) read the
weight index; (2) using the weight index, read the shared
weights. This approach can reduce the cost of reading and
storing the weights if the weight index (log2 of the number of
unique weights) is less than the bitwidth of the weight itself.

For instance, in Deep Compression [118], the number of
unique weights per layer is reduced to 256 for convolutional
layers and 16 for fully-connected layers in AlexNet, requiring
8-bit and 4-bit weight indexes, respectively. Assuming there
are U unique weights and the size of the filters in the layer
is C×R×S×M from Fig. 9(b), there will be energy savings
if reading from a CRSM × log2U -bit memory plus a U×16-
bit memory (as shown in Fig. 40) cost less than reading
from a CRSM×16-bit memory. Note that unlike the previous
quantization methods, the weight sharing approach does not
reduce the precision of the MAC computation itself and only
reduces the weight storage requirement.

B. Reduce Number of Operations and Model Size

In addition to reducing the size of each operation or operand
(weight/activation), there is also a significant amount of research
on methods to reduce the number of operations and model
size. These techniques can be loosely classified as exploiting
activation statistics, network pruning, network architecture
design and knowledge distillation.

1) Exploiting Activation Statistics: As discussed in Sec-
tion III-A1, ReLU is a popular form of non-linearity used in
DNNs that sets all negative values to zero as shown in Fig. 41(a).
As a result, the output activations of the feature maps after the
ReLU are sparse; for instance, the feature maps in AlexNet
have sparsity between 19% to 63% as shown in Fig. 41(b).
This sparsity gives ReLU an implementation advantage over
other non-linearities such as sigmoid, etc.

10Note however that multiplications do not account for a significant portion
of the total energy.
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Reduce Precision Method bitwidth Accuracy loss vs.
Weights Activations 32-bit float (%)

Dynamic Fixed Point w/o fine-tuning [121] 8 10 0.4
w/ fine-tuning [122] 8 8 0.6

Reduce Weight

BinaryConnect [127] 1 32 (float) 19.2
Binary Weight Network (BWN) [129] 1* 32 (float) 0.8

Ternary Weight Networks (TWN) [131] 2* 32 (float) 3.7
Trained Ternary Quantization (TTQ) [132] 2* 32 (float) 0.6

Reduce Weight and Activation

XNOR-Net [129] 1* 1* 11
Binarized Neural Networks (BNN) [128] 1 1 29.8

DoReFa-Net [120] 1* 2* 7.63
Quantized Neural Networks (QNN) [119] 1 2* 6.5

HWGQ-Net [130] 1* 2* 5.2

Non-linear Quantization

LogNet [135] 5 (conv), 4 (fc) 4 3.2
Incremental Network Quantization (INQ) [136] 5 32 (float) -0.2

Deep Compression [118] 8 (conv), 4 (fc) 16 0
4 (conv), 2 (fc) 16 2.6

TABLE III
METHODS TO REDUCE NUMERICAL PRECISION FOR ALEXNET. ACCURACY MEASURED FOR TOP-5 ERROR ON IMAGENET. *NOT APPLIED TO FIRST AND/OR

LAST LAYERS

9 -1 -3 
1 -5 5 
-2 6 -1 

ReLU 9 0 0 
1 0 5 
0 6 0 

(a) ReLU non-linearity
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Fig. 41. Sparsity in activations due to ReLU.

The sparsity can be exploited for energy and area savings
using compression, particularly for off-chip DRAM access
which is expensive. For instance, a simple run length coding
that involves signaling non-zero values of 16-bits and then runs
of zeros up to 31 can reduce the external memory bandwidth
of the activations by 2.1× and the overall external bandwidth
(including weights) by 1.5× [61].11 In addition to compression,
the hardware can also be modified such that it skips reading the
weights and performing the MAC for zero-valued activations
to reduce energy cost by 45% [94]. Rather than just gating the
read and MAC computation, the hardware could also skip the
cycle to increase the throughput by 1.37× [138].

The activations can be made to be even more sparse by prun-
ing the low-valued activations. For instance, if all activations
with small values are pruned, this can be translated into an
additional 11% speed up [138] or 2× power reduction [139]
with little impact on accuracy. Aggressively pruning more
activations can provide additional throughput improvement at

11This simple run length compression is within 5-10% of the theoretical
entropy limit.

a cost of reduced accuracy.

2) Network Pruning: To make network training easier, the
networks are usually over-parameterized. Therefore, a large
amount of the weights in a network are redundant and can
be removed (i.e., set to zero). This process is called network
pruning. Aggressive network pruning often requires some fine-
tuning of the weights to maintain the original accuracy. This
was first proposed in 1989 through a technique called Optimal
Brain Damage [140]. The idea was to compute the impact of
each weight on the training loss (discussed in Section II-C),
referred to as the weight saliency. The low-saliency weights
were removed and the remaining weights were fine-tuned; this
process was repeated until the desired weight reduction and
accuracy were reached.

In 2015, a similar idea was applied to modern DNNs in [141].
Rather than using the saliency as a metric, which is too difficult
to compute for the large-scaled DNNs, the pruning was simply
based on the magnitude of the weights. Small weights were
pruned and the model was fine-tuned to restore the accuracy.
Without fine-tuning the weights, about 50% of the weights
could be pruned. With fine-tuning, over 80% of the weights
were pruned. Overall this approach can reduce the number
of weights in AlexNet by 9× and the number of MACs
by 3×. Most of the weight reduction comes from the fully-
connected layers (9.9× for fully-connected layers versus 2.7×
for convolutional layers).

However, the number of weights alone is not a good metric
for energy. For instance, in AlexNet, the number of weights
in the fully-connected layers is much larger than in the
convolutional layers; however, the energy of the convolutional
layers is much higher than the fully-connected layers as shown
in Fig. 35 [80]. Rather than using the number of weights
and MAC operations as proxies for energy, the pruning of
the weights can be directly driven by energy itself [142]. An
energy evaluation method can be used to estimate the DNN
energy that accounts for the data movement from different
levels of the memory hierarchy, the number of MACs, and the
data sparsity as shown in Fig. 42; this energy estimation tool
is available at [143]. The resulting energy values for popular
DNN models are shown in Fig. 43(a). Energy-aware pruning
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Fig. 42. Energy estimation methodology from [142], which estimates the
energy based on data movement from different levels of the memory hierarchy,
number of MACs, and data sparsity.
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Fig. 43. Energy values estimated with methodology in [142].

can then be used to prune weights based on energy to reduce
the overall energy across all layers by 3.7× for AlexNet, which
is 1.74× more efficient than magnitude-based approaches [141]
as shown in Fig. 43(b). As mentioned previously, it is well
known that AlexNet is over-parameterized. The energy-aware
pruning can also be applied to GoogleNet, which is already a
small DNN model, for a 1.6× energy reduction.

Recent works have examine how to efficiently support
processing of sparse weights in hardware. One area of interest
is how to best store the sparse weights after pruning. Similar to
compressing the sparse activations discussed in Section VII-B1,
the sparse weights can be compressed to reduce memory access
bandwidth by 20 to 30% [118].

When DNN processing is performed as a matrix-vector

# of  
filters 

# of weights 

(a) Compressed sparse row (CSR)

(b) Compressed sparse column (CSC)

Fig. 44. Sparse matrix-vector multiplications using different storage formats
(Figure from [144]).

multiplication, as shown in Fig. 18(a), one challenge is
to determine how to store the sparse weight matrix in a
compressed format. The compression can be applied either
in row or column order. A compressed sparse row (CSR)
format, as shown in Fig. 44(a), is often used to perform Sparse
Matrix-Vector multiplication. However, the input vector needs
to be read in multiple times even though only a subset of it is
used since each row of the matrix is sparse. Alternatively,
a compressed sparse column (CSC) format, as shown in
Fig. 44(b), can be used, where the output is updated several
times, and only one element of the input vector is read at
a time [144]. The CSC format will provide an overall lower
memory bandwidth than CSR if the output is smaller than the
input, or in the case of DNN, if the number of filters is not
significantly larger than the number of weights in the filter
(C ×R× S from Fig. 9(b)). Since this is often true, CSC can
be an effective format for sparse DNN processing.

Custom hardware has been explored to efficiently support
pruned DNN models. Many works aim to perform the process-
ing without decompressing the weights or activations. EIE [145]
performs the sparse matrix-vector multiplication specifically for
the fully connected layers. It stores the weights in a CSC format
along with the start location of each column, which needs to be
stored since the compressed weights have variable length. When
the input is not zero, the compressed weight column is read and
the output is updated. To handle the sparsity, additional logic
is used to keep track of the location of the output that should
be updated. SCNN [146] supports processing of convolutional
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layers in a compressed format. It uses an input stationary
dataflow to deliver the compressed weights and activations to
a multiplier array followed by a scatter network to add the
scattered partial sums.

Recent works have also explored the use of structured
pruning to avoid the need for custom hardware [147, 148].
Rather than pruning individual weights (also referred to as fine-
grained pruning), structured pruning involves pruning groups
of weights (also referred to as coarse-grained pruning). The
benefits of structured pruning are (1) the resulting weights can
better align with the data-parallel architecture (e.g., SIMD)
found in existing general purpose hardware, which results in
more efficient processing [149]; (2) it amortizes the overhead
cost required to signal the location of the non-zero weights
across a group of weights, which improves compression and
thus reduces storage cost. These groups of weights can include
a pair of neighboring weights, an entire row or column of a
filter, an entire channel of a filter or the entire filter itself; using
larger groups tends to result in higher loss in accuracy [150].

3) Compact Network Architectures: The number of weights
and operations can also be reduced by improving the network
architecture itself. The trend is to replace a large filter with a
series of smaller filters, which have fewer weights in total; when
the filters are applied sequentially, they achieve the same overall
effective receptive field (i.e., the region the filter uses from input
image to compute an output). This approach can be applied
during the network architecture design (before training) or by
decomposing the filters of a trained network (after training).
The latter one avoids the hassle of training networks from
scratch. However, it is less flexible than the former one. For
example, existing methods can only decompose a filter in a
trained network into a series of filters without non-linearity
between them.

a) Before Training: In recent DNN models, filters with
a smaller width and height are used more frequently because
concatenating several of them can emulate a larger filter as
shown in Fig. 13. For example, one 5×5 convolution can be
replaced with two 3×3 convolutions. Alternatively, one N×N
convolution can be decomposed into two 1-D convolutions, one
1×N and one N×1 convolution [53]; this basically imposes
a restriction that the 2-D filter must be separable, which is
a common constraint in image processing [151]. Similarly, a
3-D convolution can be replaced by a set of 2-D convolutions
(i.e., applied only on one of the input channels) followed by
1×1 3-D convolutions as demonstrated in Xception [152] and
MobileNets [153]. The order of the 2-D convolutions and 1×1
3-D convolutions can be switched.

1×1 convolutional layers can also be used to reduce the
number of channels in the output feature map for a given
layer, which reduces the number of filter channels and thus
computation cost for the filters in the next layer as demonstrated
in [15, 51, 52]; this is often referred to as a ‘bottleneck’ as
discussed in Section III-B. For this purpose, the number of 1×1
filters has to be less than the number of channels in the 1×1
filter. For example, 32 filters of 1×1×64 can transform an input
with 64 channels to an output of 32 channels and reduce the
number of filter channels in the next layer to 32. SqueezeNet
uses many 1×1 filters to aggressively reduce the number of

weights [154]. It proposes a fire module that first ‘squeezes’
the network with 1×1 convolution filters and then expands
it with multiple 1×1 and 3×3 convolution filters. It achieves
an overall 50× reduction in number of weights compared to
AlexNet, while maintaining the same accuracy. It should be
noted, however, that reducing the number of weights does not
necessarily reduce energy; for instance, SqueezeNet consumes
more energy than AlexNet, as shown in Fig. 43(a).

b) After Training: Tensor decomposition can be used to
decompose filters in a trained network without impacting the
accuracy. It treats weights in a layer as a 4-D tensor and breaks
it into a combination of smaller tensors (i.e., several layers).
Low-rank approximation can then be applied to further increase
the compression rate at the cost of accuracy degradation, which
can be restored by fine-tuning the weights.

This approach is demonstrated using Canonical Polyadic (CP)
decomposition, a high-order extension of singular value decom-
position that can be solved by various methods, such as a greedy
algorithm [155] or a non-linear least-square method [156].
Combining CP-decomposition with low-rank approximation
achieves a 4.5× speed-up on CPUs [156]. However, CP-
decomposition cannot be computed in a numerically stable
way when the dimension of the tensor, which represents the
weights, is larger than two [156]. To alleviate this problem,
Tucker decomposition is adopted instead in [157].

4) Knowledge Distillation: Using a deep network or av-
eraging the predictions of different models (i.e., ensemble)
gives a better accuracy than using a single shallower network.
However, the computational complexity is also higher. To get
the best of both worlds, knowledge distillation transfers the
knowledge learned by the complex model (teacher) to the
simpler model (student). The student network can therefore
achieve an accuracy that would be unachievable if it was
directly trained with the same dataset [158, 159]. For example,
[160] shows how using knowledge distillation can improve the
speech recognition accuracy of a student net by 2%, which is
similar to the accuracy of a teacher net that is composed of
an ensemble of 10 networks.

Fig. 45 shows the simplest knowledge distillation
method [158]. The softmax layer is commonly used as the
output layer in the image classification networks to generate
the class probabilities from the class scores12; it squashes the
class scores into values between 0 and 1 that sum up to 1.
For this knowledge distillation method, soft targets (values
between 0 and 1) such as the class scores of the teacher DNN
(or an ensemble of teacher DNNs) are used instead of the
hard targets (values of either 0 or 1) such as the labels in the
dataset. The objective is to minimize the squared difference
between the soft targets and the class scores of the student DNN.
Class scores are used as the soft targets instead of the class
probabilities because small values in the class scores contain
important information that may be eliminated by the softmax.
Alternatively, class probabilities after the softmax layer can be
used as soft targets if the softmax is configured to generate
softer class probabilities where the smaller values retain more
information [160]. Finally, the intermediate representations of

12Also commonly referred to as logits.
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Fig. 45. Knowledge distillation matches the class scores of a small DNN to
an ensemble of large DNNs.

the teacher DNN can also be incorporated as the extra hints
to train the student DNN [161].

VIII. BENCHMARKING METRICS FOR DNN EVALUATION
AND COMPARISON

As we have seen in this article, there has been a significant
amount of research on efficient processing of DNNs. We should
consider several key metrics to compare the various strengths
and weaknesses of different designs and proposed techniques.
These metrics should cover important attributes such as accu-
racy/robustness, power/energy consumption, throughput/latency
and cost. Reporting all these metrics is important in order
to provide a complete picture of the trade-offs made by a
proposed design or technique. We have prepared a website to
collect these metrics from various publications [162].

In terms of accuracy and robustness, it is important that the
accuracy be reported on widely-accepted datasets as discussed
in Section IV. The difficulty of the dataset and/or task should
be considered when measuring the accuracy. For instance, the
MNIST dataset for digit recognition is significantly easier than
the ImageNet dataset. As a result, a DNN that performs well
on MNIST may not necessarily perform well on ImageNet.
Thus it is important that the same dataset and task is used when
comparing the accuracy of different DNN models; currently
ImageNet is preferred since it presents a challenge for DNNs,
as opposed to MNIST, which can also be addressed with simple
non-DNN techniques. To demonstrate primarily hardware
innovations, it would be desirable to report results for widely-
used DNN models (e.g., AlexNet, GoogLeNet) whose accuracy
and robustness have been well studied and tested.

Energy and power are important when processing DNNs at
the edge in embedded devices with limited battery capacity
(e.g., smart phones, smart sensors, UAVs, and wearables), or in
the cloud in data centers with stringent power ceilings due to
cooling costs, respectively. Edge processing is preferred over
the cloud for certain applications due to latency, privacy or
communication bandwidth limitations. When evaluating the
power and energy consumption, it is important to account
for all aspects of the system including the chip and external
memory accesses.

High throughput is necessary to deliver real-time perfor-
mance for interactive applications such as navigation and

robotics. For data analytics, high throughput means that more
data can be analyzed in a given amount of time. As the amount
of visual data is growing exponentially, high-throughput big
data analytics becomes important, particularly if an action needs
to be taken based on the analysis (e.g., security or terrorist
prevention; medical diagnosis).

Low latency is necessary for real-time interactive applications.
Latency measures the time between when the pixel arrives
to a system and when the result is generated. Latency is
measured in terms of seconds, while throughput is measured
in operations/second. Often high throughput is obtained by
batching multiple images/frames together for processing; this
results in multiple frame latency (e.g., at 30 frames per second,
a batch of 100 frames results in a 3 second delay). This delay
is not acceptable for real-time applications, such as high-speed
navigation where it would reduce the time available for course
correction. Thus achieving low latency and high throughput
simultaneously can be a challenge.

Hardware cost is in large part dictated by the amount of
on-chip storage and the number of cores. Typical embedded
processors have limited on-chip storage on the order of a few
hundred kilobytes. Since there is a trade-off between the amount
of on-chip memory and the external memory bandwidth, both
metrics should be reported. Similarly, there is a correlation
between the number of cores and the throughput. In addition,
while many cores can be built on a chip, the number of cores
that can actually be used at a given time should be reported. It is
often unrealistic to assume peak utilization and performance due
to limitations of mapping and memory bandwidth. Accordingly,
the power and throughput should be reported for running actual
DNNs as opposed to only reporting theoretical limits.

A. Metrics for DNN Models

To evaluate the properties of a given DNN model, we should
consider the following metrics:

• The accuracy of the model in terms of the top-5 error
on datasets such as ImageNet. Also, the type of data
augmentation used (e.g., multiple crops, ensemble models)
should be reported.

• The network architecture of the model should be reported,
including number of layers, filter sizes, number of filters
and number of channels.

• The number of weights impact the storage requirement of
the model and should be reported. If possible, the number
of non-zero weights should be reported since this reflects
the theoretical minimum storage requirements.

• The number of MACs that needs to be performed should
be reported as it is somewhat indicative of the number
of operations and potential throughput of the given DNN.
If possible, the number of non-zero MACs should also
be reported since this reflects the theoretical minimum
compute requirements.

Table IV shows how these metrics are reported for various
well known DNNs. The accuracy is reported for the case where
only a single crop for a single model is used for classification,
such that the number of weights and MACs in the table are
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Metrics AlexNet GoogLeNet v1
dense sparse dense sparse

Top-5 error 19.6 20.4 11.7 12.7
Number of CONV Layers 5 5 57 57

Depth in
(Number of CONV Layers) 5 5 21 21

Filter Sizes 3,5,11 1,3,5,7
Number of Channels 3-256 3-832

Number of Filters 96-384 16-384
Stride 1,4 1,2

NZ Weights 2.3M 351k 6.0M 1.5M
NZ MACs 395M 56.4M 806M 220M
FC Layers 3 3 1 1
Filter Sizes 1,6 1

Number of Channels 256-4096 1024
Number of Filters 1000-4096 1000

NZ Weights 58.6M 5.4M 1M 870k
NZ MACs 14.5M 1.9M 635k 663k

Total NZ Weights 61M 5.7M 7M 2.4M
Total NZ MACs 410M 58.3M 806M 221M

TABLE IV
METRICS FOR POPULAR DNN MODELS. SPARSITY IS ACCOUNT FOR BY

REPORTING NON-ZERO (NZ) WEIGHTS AND MACS.

consistent.13 Note that accounting for the number of non-zero
(NZ) operations significantly reduces the number of MACs
and weights. Since the number of NZ MACs depends on the
input data, we propose using the publicly available 50,000
validation images from ImageNet for the computation. Finally,
there are various methods to reduce the weights in a DNN
(e.g., network pruning in Section VII-B2). Table IV shows
another example of these DNN model metrics, by comparing
sparse DNNs pruned using [142] to dense DNNs.

B. Metrics for DNN Hardware

To measure the efficiency of the DNN hardware, we should
consider the following additional metrics:

• The power and energy consumption of the design should
be reported for various DNN models; the DNN model
specifications should be provided including which layers
and bit precision are supported by the hardware during
measurement. In addition, the amount of off-chip accesses
(e.g., DRAM accesses) should be included since it
accounts for a significant portion of the system power; it
can be reported in terms of the total amount of data that
is read and written off-chip per inference.

• The latency and throughput should be reported in terms
of the batch size and the actual run time for various
DNN models, which accounts for mapping and memory
bandwidth effects. This provides a more useful and
informative metric than peak throughput.

• The cost of the chip depends on the area efficiency, which
accounts for the size and type of memory (e.g., registers
or SRAM) and the amount of control logic. It should be

13Data augmentation is often used to increase accuracy. This includes using
multiple crops of an image to account for misalignment; in addition, an
ensemble of multiple models can be used where each model has different
weights due to different training settings, such as using different initializations
or datasets, or even different network architectures. If multiple crops and
models are used, then the number of MACs and weights required would
increase.

reported in terms of the core area in squared millimeters
per multiplier along with process technology.

In terms of cost, different platforms will have different
implementation-specific metrics. For instance, for an FPGA,
the specific device should be reported, along with the utilization
of resources such as DSP, BRAM, LUT and FF; performance
density such as GOPs/slice can also be reported.

Each processor should report various specifications for each
metric as shown in Table V, using the Eyeriss chip as an
example. It is important that all metrics and specifications are
accounted for in order fairly evaluate all the design trade-offs.
For instance, without the accuracy given for a specific dataset
and task, one could run a simple DNN and easily claim low
power, high throughput, and low cost – however, the processor
might not be usable for a meaningful task; alternatively, without
reporting the off-chip bandwidth, one could build a processor
with only multipliers and easily claim low cost, high throughput,
high accuracy, and low chip power – however, when evaluating
system power, the off-chip memory access would be substantial.
Finally, the test setup should also be reported, including whether
the results are measured or obtained from simulation14 and
how many images were tested.

In summary, the evaluation process for whether a DNN
system is a viable solution for a given application might go as
follows: (1) the accuracy determines if it can perform the given
task; (2) the latency and throughput determine if it can run fast
enough and in real-time; (3) the energy and power consumption
will primarily dictate the form factor of the device where the
processing can operate; (4) the cost, which is primarily dictated
by the chip area, determines how much one would pay for this
solution.

IX. SUMMARY

The use of deep neural networks (DNNs) has seen explosive
growth in the past few years. They are currently widely used
for many artificial intelligence (AI) applications including
computer vision, speech recognition and robotics and are often
delivering better than human accuracy. However, while DNNs
can deliver this outstanding accuracy, it comes at the cost
of high computational complexity. Consequently, techniques
that enable efficient processing of deep neural network to
improve energy-efficiency and throughput without sacrificing
accuracy with cost-effective hardware are critical to expanding
the deployment of DNNs in both existing and new domains.

Creating a system for efficient DNN processing should
begin with understanding the current and future applications
and the specific computations required both now and the
potential evolution of those computations. This article surveys a
number of the current applications, focusing on computer vision
applications, the associated algorithms, and the data being used
to drive the algorithms. These applications, algorithms and
input data are experiencing rapid change. So extrapolating
these trends to determine the degree of flexibility desired to
handle next generation computations, becomes an important
ingredient of any design project.

14If obtained from simulation, it should be clarified whether it is from
synthesis or post place-and-route and what library corner was used.
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Metrics Specifications Eyeriss

Cost

Process Technology 65nm LP TSMC (1.0V)
Total Core Area (mm2) 12.25
Total On-chip Memory (kB) 192
Number of Multipliers 168
Core area 0.073per Multiplier (mm2)
On-chip Memory 1.14per Multiplier (kB)

Test Setup Measured or Simulated Measured
If Simulated, Syn or PnR n/a

Accuracy

DNN Model AlexNet VGG-16
Top-5 error on ImageNet 19.8 8.8
Dense/Sparse Dense Dense
Supported Layers All CONV layers All CONV layers
Bits per Weight 16 16
Bits per Input Activation 16 16

Latency and Throughput Batch Size 4 3
Run Time (msec) 115.3 4309.4

Power and Energy
Power (mW) 278 236
Off-chip Accesses 3.85 107.03per Image Inference (MBytes)

Test Setup Number of Images Tested 100 100
TABLE V

EXAMPLE BENCHMARK METRICS FOR EYERISS [94].

During the design-space exploration process, it is critical to
understand and balance the important system metrics. For DNN
computation these include the accuracy, energy, throughput
and hardware cost. Evaluating these metrics is, of course,
key, so this article surveys the important components of
a DNN workload. In specific, a DNN workload has two
major components. First, the workload is the form of each
DNN network including the ‘shape’ of each layer and the
interconnections between layers. These can vary both within
and between applications. Second, the workload consists of
the specific the data input to the DNN. This data will vary
with the input set used for training or the data input during
operation for inference.

This article also surveys a number of avenues that prior
work have taken to optimize DNN processing. Since data
movement dominates energy consumption, a primary focus
of some recent research has been to reduce data movement
while maintaining accuracy, throughput and cost. This means
selecting architectures with favorable memory hierarchies like
a spatial array, and developing dataflows that increase data
reuse at the low-cost levels of the memory hierarchy. We
have included a taxonomy of dataflows and an analysis of
their characteristics. Other work is presented that aims to save
space and energy by changing the representation of data values
in the DNN. Still other work saves energy and sometimes
increases throughput by exploiting the sparsity of weights
and/or activations.

The DNN domain also affords an excellent opportunity
for joint hardware/software co-design. For example, various
efforts have noted that efficiency can be improved by increasing
sparsity (increasing the number of zero values) or optimizing
the representation of data by reducing the precision of values
or using more complex mappings of the stored value to the
actual value used for computation. However, to avoid losing
accuracy it is often useful to modify the network or fine-tune the
network’s weights to accommodate these changes. Thus, this

article both reviews a variety of these techniques and discusses
the frameworks that are available for describing, running and
training networks.

Finally, DNNs afford the opportunity to use mixed-signal
circuit design and advanced technologies to improve efficiency.
These include using memristors for analog computation and 3-D
stacked memory. Advanced technologies can also can facilitate
moving computation closer to the source by embedding compu-
tation near or within the sensor and the memories. Of course, all
of these techniques should also be considered in combination,
while being careful to understand their interactions and looking
for opportunities for joint hardware/algorithm co-optimization.

In conclusion, although much work has been done, deep
neural networks remain an important area of research with
many promising applications and opportunities for innovation
at various levels of hardware design.
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