
Course Project: MNASNet
ECE 590

Gilberto Barrientos
George Gomez
Robert Wallace

Overview
The project investigated the MNASnet architecture which is a result of MNAS, a

platform-aware neural architecture search for mobile. We used open-source code to implement
the MNASnet, then applied transfer learning by reconfiguring the MNASnet architecture to be
compatible with the CIFAR10 dataset and the FashionMNIST dataset. Thereafter, we measured
accuracy and latency. The aim of this project was to implement the foundation for NAS and
reinforcement learning which take both accuracy and latency into account when calculating the
reward.

Several challenges were encountered during the implementation of the project. The first
challenge encountered was finding open-source code for MNAS. Significant effort and time were
spent attempting to find the open-source code for the paper’s neural architecture search. The
code was not officially released and there are no open-source implementations of it available
since Google did not want it publicized. The only open-source code available were
implementations for the MNASnet architecture. The research paper supplies a link to their
official MNASnet tutorial on Google’s Cloud TPU, however, the website states that their
MNASnet tutorial is deprecated and that platform requires a billing account to use their services.
Furthermore, many of the other MNASnet tutorials found on GitHub repositories had little to no
documentation. We overcame this issue by continuing to search and ultimately finding
open-source code and documentation for MNASnet on Pytorch and the aim of the project was
shifted to demonstrate our understanding of the MNASnet architecture, NAS, and reinforcement
learning rather than implement the MNAS from scratch. When applying transfer learning, we
learned that different datasets are not compatible with the MNASnet model immediately. To
resolve this issue, we had to adjust the input convolutional layer and the output layers to satisfy
the needs of the dataset used. MNASnet was originally trained using ImageNet, which has RGB
colored images, which led to three input channels. Only the FashionMNIST data set required the
input convolutional to be changed from three input channels to one input channel because the
FashionMNIST database consists of only gray-scale images. Similarly, the output layers had to
be changed since ImageNet has 1000 output classifications, while FashionMNIST and CIFAR10
have 10 output classifications each.

​​Method Description

The implementation of MNAS is made up of several key points: Factorized Hierarchical
Search Space, Cost Function, and Search Algorithm. Figure 1 shows the factorized hierarchical
search space used in MNAS. It is shown that the CNN is broken up into several blocks. Each
block is unique and the NAS searches for the operation and connections between each block
separately. This is done as the input and output shapes can be used to help determine the
accuracy and latency tradeoff.

Figure 1: CNN Macroarchitecture

The search space for each block is shown in Figure 2. Each block consists of the same list shown
in Figure 2, but there architecture search also implements the per-block subspace, which consists
of Convolutional operations, convolutional kernel size, squeeze and excitement, skip operations,
output filter size, and number of layers per block. N determines the number of times a layer is
repeated for a block, and the remaining determine the layer’s architecture. This approach to the
search space leads to increased layer diversity rather than simply stacking the same cell
repeatedly.

Figure 2: Search Space

The cost function is an evaluation technique used to evaluate model performance. This is
especially prevalent in reinforcement learning where after training, accuracy and latency are
observed and altered where seen fit to improve these factors. Such as in Figure 3, where
MnasNet’s cost function is used to update model parameters. To where m is the sampled model
and R(m) denotes the objective value from Figure 4. Through every iteration of reinforcement
learning, a new cost function is computed until a number of user-defined steps are done or
parameters converge.

The search algorithm was inspired by reinforced learning and chosen due to its ability to
adjust rewards with relative ease. Its methodology approach is to find multiple Pareto optimal
solutions for multi-objective search problems. Pareto solution is when it has the highest accuracy
without increasing latency or lowest latency without decreasing accuracy. This approach
overtakes the shortcomings of previous approaches, such as in figure 2, where instead of multiple
solutions only looks at a singular metric and measures to maximize accuracy under a target
latency constraint. An approach also taken is the mapping of each convolutional neural network
model in the search space to a list of tokens. Tokens are determined via a1:T as seen in Figure 3
based on parameters θ. It looks to maximize reward via the cost function. The search framework
consists of 3 main components: the recurrent neural network controller; a trainer to evaluate
accuracy, and a mobile device to obtain latency. The first step of which, batches of models are
sampled via θ by a prediction of a sequence of tokens. The models are then evaluated for
accuracy, given a target task, and evaluated on mobile devices for latency evolution. Reward is
then promptly calculated using figure 4. Parameters are then adjusted in the controller using the
equation in figure 3 by utilizing proximal policy optimization. These sequence actions are looped
until it reaches a user-defined step count or until parameters θ converge.

Figure 3: Cost Function

Figure 4: Pareto Optimal Solution

Figure 5: Weight Factor

Important Code to Display
Colab Project Notebook Link:
https://colab.research.google.com/drive/1kUxFnoIRW6NkLjrSU7dRR9azNDG3zs83?usp=shari
ng

To adapt the model to a different dataset requires the modification of the input and output
layers of the model. Specifically for CIFAR10, the classification layer needs to be reduced from
1000 outputs to 10 outputs. The following code is used to manage those layers from the
preexisting mode:

Figure 6: CIFAR10 Model Modifications

For FashionMNIST, the number of input channels needs to be reduced from 3 to 1 and
the classification layer output needs to also be reduced from 1000 to 10. Below is the code that is
used to change the MNASnet model to work with the FashionMNIST model.

Figure 7: FashionMNIST Model Modifications

https://colab.research.google.com/drive/1kUxFnoIRW6NkLjrSU7dRR9azNDG3zs83?usp=sharing
https://colab.research.google.com/drive/1kUxFnoIRW6NkLjrSU7dRR9azNDG3zs83?usp=sharing

Once the models have been adjusting, training can be performed. A training sequence can
be seen below. This process is relatively simple. Using the specified training set, the model is
trained using SGD and the results are printed to the console

Figure 8: Training Function

Figure 9: Training Specifications

After training, the model can perform inference. Accuracy of the inference along with
latency is measured. Currently the latency is measured for the inference on the Colab platform.
This technique for latency measurement can be expanded to other platforms for future work in
regards to implementation of the NAS.

Figure 10: Obtaining latency of the model inference

Screenshot of Running Experimental Code and Experimental Results
There are four different experiments that are performed on the model. The first is the

model modified for CIFAR10 using a non-pretrained version of the model. The results of
training and inference are as follows:

Figure 11: Non-pretrained CIFAR10 MNASnet

Figure 12: Results of Non-pretrained CIFAR10 MNASnet

The next experiment is on the FashionMNIST using a non-pretrained model.This results
in a similar outcome to the CIFAR10 results. We believe this is due to the light training regime
that the model undergoes and that it has much more potential with additional training.

Figure 13: Non-pretrained FashionMNIST MNASnet

Figure 14: Results of Non-pretrained FashionMNIST MNASnet

The next two experiments are using a pretrained model on both CIFAR10 and
FashionMNIST. The results for the CIFAR10 run are below,

Figure 15: Pretrained CIFAR10 MNASnet

Figure 16: Results of pretrained CIFAR10 MNASnet

The results for FashionMNIST appear to have a higher accuracy and lower latency.
Unfortunately the pretraining that the models undergo before download is not described,
however it appears that FashionMNIST has a better result than CIFAR10 undergoing the same
training run.

Figure 17: Pretrained FashionMNIST MNASnet

Figure 18: Results of pretrained FashionMNIST MNASnet

The final results accumulated together are as follows. All models underwent 5 epochs of
training with a training set of 10,000 and a test set of 10,000. Top-1 accuracy is the only thing
that we measure because a top 5 accuracy would appear very high due to only having 10
classifications in each of the data sets.

Dataset Parameters Accuracy Latency

CIFAR10 3,115,122 10.00% 111.83 ms

FashionMNIST 3,114,546 10.00% 112.40 ms

CIFAR10 Pretrained 3,115,122 67.05% 113.39 ms

FashionMNIST
Pretrained

3,114,546 79.32% 110.42 ms

Table 1: Experimental Results

Conclusion
The project aimed to investigate MNASnet and to gain a deeper understanding of MNAS

and reinforcement learning. The experiment was completed successfully. Through the
experiment, we were able to apply transfer learning on MNASnet to the CIFAR10 and
FashionMNIST datasets. Each model was run for 5 epochs of training with a training set and
testing set of 10,000. Furthermore, we were successfully able to benchmark the latency during
the experiments. Comparing the Top-1 accuracies of the experiment, we see that the
FashionMNIST dataset running on the pretrained MNASnet had the highest accuracy and the
lowest latency. Through this experiment, we are able to learn more about neural architecture
searches, gain hands-on practice researching open-source machine learning models, and
experience modifying open-source code to our experimental needs. Our project demonstrated the
foundation for reinforcement learning. Thus, a possible improvement to this project is to fully
implement a NAS from scratch using the building blocks shown throughout our process.

Reference
Link to original paper: https://arxiv.org/abs/1807.11626
Link to source code: https://pytorch.org/vision/stable/_modules/torchvision/models/mnasnet.html
Link to any tutorials used:

Transfer Learning:
https://colab.research.google.com/github/kjamithash/Pytorch_DeepLearning_Experiments/blob/
master/FashionMNIST_ResNet_TransferLearning.ipynb

https://arxiv.org/abs/1807.11626
https://pytorch.org/vision/stable/_modules/torchvision/models/mnasnet.html
https://colab.research.google.com/github/kjamithash/Pytorch_DeepLearning_Experiments/blob/master/FashionMNIST_ResNet_TransferLearning.ipynb
https://colab.research.google.com/github/kjamithash/Pytorch_DeepLearning_Experiments/blob/master/FashionMNIST_ResNet_TransferLearning.ipynb

