MNASNet:

Platform-Aware Neural
Architecture Search for Mobile

Gilberto Barrientos
George Gomez
Robert Wallace

Quick Summary of Paper

e Proposal - automated neural architecture search approach for designing mobile

CNN
e Step away from using FLOPS and instead to measure latency directly on real

world mobile devices
e Factorized Hierarchical Search Space

Input Block Block Block Block Block Block Block L+ output

Cost Function/Search Algorithm

Reinforcement learning is used to find pareto optimal solution.

J = Ep(a,lzT;O) [R(m)]
ACC(m)

o
e Mapeach CNN inthe search space as a list of tokens
Inference Latency Top-1 Acc.
MobileNetV2 75ms 72.0%
NASNet 183ms 74.0%
w/o SE
MnasNet-B1 77ms 74.5%
w/ SE MnasNet-Al 78ms 75.2%
MnasNet-A2 84ms 75.6%

LAT(m)

Project Overview

Analysis of MNASnhet_B1 network with CIFAR10 and FashionMNIST

e Implement MNASnhet model via Pytorch fgww el
e Utilize new dataset: oris Nle seaey

24 B2
o FashionMNIST WSRO
m Grayscale images of clothing
m Single channel
o CIFAR10
m 10classes of images such as [airplane,automobile, bird,cat,deer,dog,frog,horse,ship,truck]
m Threechannel

e Modify existing model

e Trainand Evaluate - Google Colab

o Accuracy
o Latency

Model Modifications

e CIFAR10 Input matches that of ImageNet (3 channels)

o Adjust classification layer

e FashionMNIST requires modification.
o Adjust input layer and classification layer

MNASNet (
(layers): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

(model): MNASNet(
(layers): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

(classifiér): Sequential(
(0): Dropout(p=0.2, inplace=True)
(1): Linear(in_features=1280, out_features=1000, bias=True)

(classifier): Sequential(
(0): Dropout(p=0.2, inplace=True)
(1): Linear(in_features=1280, out_features=10, bias=True)

)

Before (ImageNet) After (FashionMNIST)

self.model.layers[@] = nn.Conv2d(in_channels, 32, kernel _size=(3, 3), stride=(2, 2), padding=(1, 1), bias=F

self.model.classifier[1l] = nn.Linear(1280, 10)

Modification Code

Training

.489341
.768975
.873401
.674739
.415817
.435732
.434942

[5120/10000 (51%)] Loss:
[5632/10000 (56%)] Loss:
[6144/10000 (61%)] Loss:
[6656/10000 (66%)] Loss:
[7168/10000 (72%)] Loss:
[7680/10000 (77%)] Loss:
[8192/10000 (82%)] Loss:
Epoch: [8704/10000 (87%)] Loss: ©.573434

Epoch: [9216/10000 (92%)] Loss: 0.389902

Epoch: 4 [9728/10000 (97%)] Loss: ©.592647

set: Average loss: 0.0171, Accuracy 7924/10000 (79.24%)

Epoch: [0/10000 (0%)] Loss: ©.522517

o EpOChSI 5 Epoch: 4 [512/10000 (5%)] Loss: ©.468161
. . . Epoch: 4 [1024/10000 (10%)] Loss: ©.514315
L Tralnlng Set Size: 10000 Epoch: 4 [1536/10000 (15%)] Loss: 0.664150
— Epoch: [2048/10000 (20%)] Loss: ©0.287251
e SGD optlmlzer Epoch: 4 [2560/10000 (26%)] Loss: ©.498152
. . Epoch: [3072/10000 (31%)] Loss: ©.537857
e Cross Entropy Loss Criterion Epoch: 4 [3584/10000 (36%)] Loss: ©.547040
. Epoch: [4096/10000 (41%)] Loss: 0.679059
o Learnlng Rate: 0.01 Epoch: 4 [4608/10000 (46%)] Loss: 0.467151

o

. Epoch:

Batch Size: 32 ool
Epoch:

Epoch:

Epoch:

Epoch:

Epoch:

Eo T S T T T R S S R T i i T
OO0 000D

Training for FashionMNIST from pretrained
model

Evaluation

[) Evaluation Set Size: 10000 timer = benchmark.Timer(stmt="run_inference(model, inputs)"”,
setup="from _ main__ import run_inference",
e Benchmark 10 Inferences alobals={

o Average for latency “model™: model,
"inputs”: inputs

b
Code Snippet of Benchmarking

Test set: Average loss: 0.0168, Accuracy: 7932/10000 (79.32%), Latency: 110.42 ms

Evaluation of FashionMNIST after 5 epochs from
pretrained model

Results - Non-pretrained Model

111':in Accuracy using 10000 training data in 5 epochs

16 -

14 -

10 15 20 25 30 35 40 45 50

Train Loss using 10000 training data in 5 epochs
0.0720 -
0.0715 -
0.0710 -
0.0705 -
0.0700 -
0.0695 -
0.0690 -
0.0685 -

10 15 20 25 30 35 40 45 50

CIFAR10

Train

Accuracy using 10000 training data in 5 epochs

E e e e g

10 15 20 25 30 35 40 45 50

0.070 1
0.065 -
0.060 -
0.055 -
0.050 -
0.045 -
0.040 -

Train Loss using 10000 training data in 5 epochs

10 15 20 25 30 35 40 45 50

FashionMNIST

Results - Pretrained Model

Train Accuracy using 10000 training data in 5 epochs TO p_1 -

m.

50 4

67.05%

Latency:
113.39 ms

Train Loss using 10000 training data in 5 epochs

0.06 1
0.05 |
0.04 1

0.03 4

10 15 20 25 30 35 40 45 50

10 15 20 25 30 35 40 45 50

CIFAR10

Train Accuracy using 10000 training data in 5 epochs

E 888883

Top-1:
79.32%

Latency:
110.42 ms

0.07 4
0.06 4
0.05 4
0.04 4
0.03 4
0.02 4

10 15 20 25 30 35 40 45 50
Train Loss using 10000 training data in 5 epochs

10 15 20 25 30 35 40 45 50

FashionMNIST

Team Member Duties

e Everyone:
o Reading and understanding paper
o Researching open-source repositories
o Shared Google Colab file to allow parallel progress
o Presentation + Report

e George and Gilberto

o Researching Transfer Learning
o Adjusting model

e Robert:

o Implementing latency benchmarking
o Obtaining Results

Challenges

e Deprecated official MNAShet tutorial on Google’s Cloud TPU

o Onlyworks with a billing account

e Imagenet no longer publicly available in 2021

o Requires free account
o Deprecates previous tutorials

e Finding well documented repository
e FEverydatasetis not compatible with the model
o Requires altering afew layers

e Measuring latency
o Benchmark can take a very long time to obtain accurate latency for a single model

Conclusion

e What we achieved:
o Run MNASnetB1 on multiple datasets
o Configure models to fit desired datasets
o Implement latency tracking

e What we learned:

Public source code can be difficult at times to find
Practiced with several cloud platforms and libraries
Transfer Learning

Code reading skills

o O O O

