

ECE499/ECE590 Machine Learning for Embedded Systems (Fall 2021)

Lecture 1: Course Information and Introduction to Machine Learning

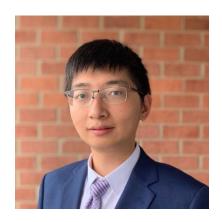
Weiwen Jiang, Ph.D.

Electrical and Computer Engineering

George Mason University

wjiang8@gmu.edu

About Me.



Dr. Weiwen Jiang

Background

- Researcher at University of Pittsburgh (2017-2019)
- Postdoc at University of Notre Dame (2019-2021)
- George Mason University (2021 present)

Research Interests

- HW/SW Co-Design
- Quantum Machine Learning

Contacts:

- wjiang8@gmu.edu
- Nguyen Engineering Building, Room3247
- (412)427-0695
- https://jqub.github.io/

Teaching Assistant

Zhepeng Wang (Ph.D. Candidate)

zwang48@gmu.edu

Office Hours: TBD

Agenda

- Course Information
 - Logistics
 - Motivation
 - Overview
- Introduction to Artificial Neuron and Multi-Layer Perceptron (MLP)

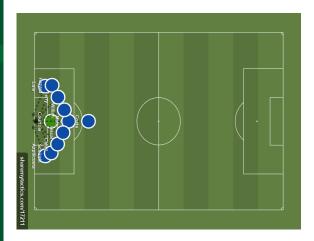
Course Logistics

Prerequisites (Important!)

CS 222 and ECE 231 and ECE 350 with the minimum grade of C

- CS 222 Computer Programming for Engineers
- ECE 231: Digital System Design
- ECE 350: Embedded Systems and Hardware Interfaces

Lecture-Presentation-Lab Hours



10-0-0 (No!)

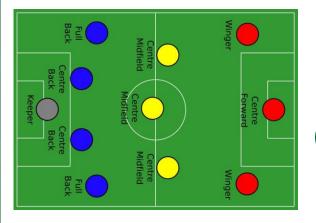
Good Stuff

No hand-writing

No hand-writingworks.

Contents driven by a mand and interest

State-of-the-art techniques



4-3-3 (Yes!)

"Bad" Stuff

- You'll have to make presentation or critiques
- You'll have to hand-on labs
- You'll have to work on a final project
- Eventually, they will do you good!

I am inviting special guests from

Facebook, Harvard, UIUC, and

Northeastern to present their

Course Resources

Blackboard:

- Assignments will be posted and submitted here!
- Online discussion, shared documents, announcements.
 - Do NOT upload codes in discussion.

Course Website:

- https://jqub.github.io/2021/09/01/ML4Emb/
- Course information (TA time, location, zoom, etc.)
- Slides, readings, and documents will be posted here!

Grading Policy

Undergraduate (ECE 499)

•	Homework & Labs	50%
•	Paper Critiques	10%
•	Project progress review	10%
•	Project final review	30%

Graduate (ECE 590)

Homework & Labs	50%
 Research paper presentation 	20%
 Project progress review 	10%
 Project final review/report 	20%

You Have Been Warned. Zero Tolerance!

No matter vaccinated or not, face mask is required

in class

Request to a Zoom access for a few classes if needed

You Have Been Warned. Zero Tolerance!

 Lecture content and materials should NOT go online without explicit permission

No plagiarism!

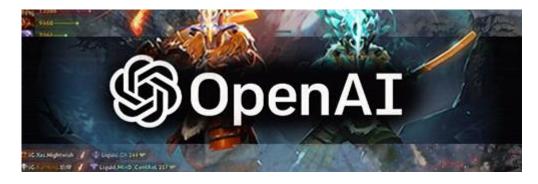
The most common sense of way interpreting no plagiarism: You need to DO your work.

"Machine Learning for Embedded Systems" Course Motivation

"MACHINE LEARNING WILL AUTOMATE JOBS THAT MOST PEOPLE THOUGHT COULD ONLY BE DONE BY PEOPLE." ~ DAVE WATERS.

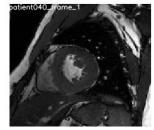
ML Applications

Game Play



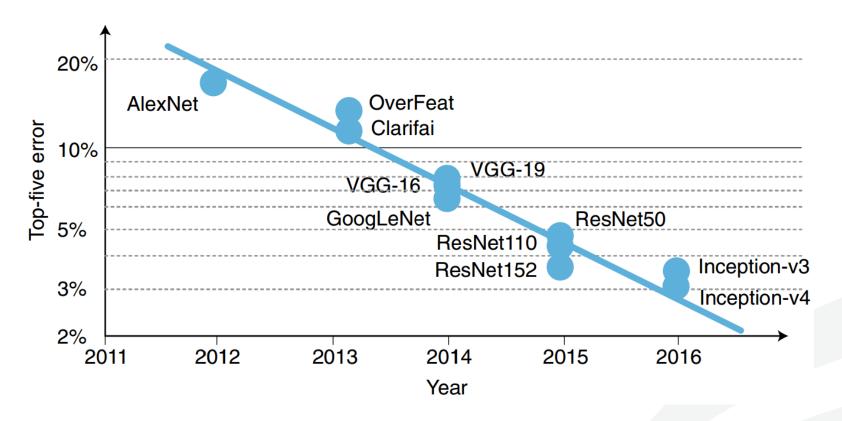
Autonomous Driving

Medical Applications



Accuracy is the Key in ML

Error rate improved exponentially

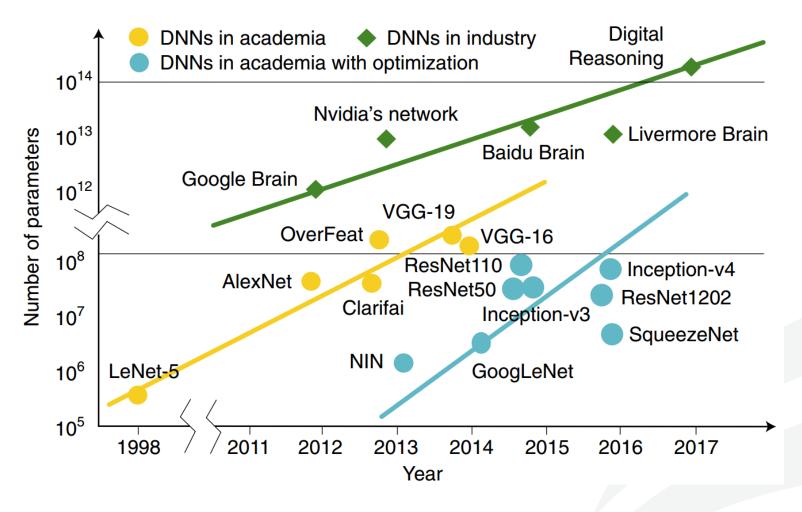


Error rate decreases by approximately 30% each year

Xu, Xiaowei, et al. "Scaling for edge inference of deep neural networks." Nature Electronics 1.4 (2018): 216.

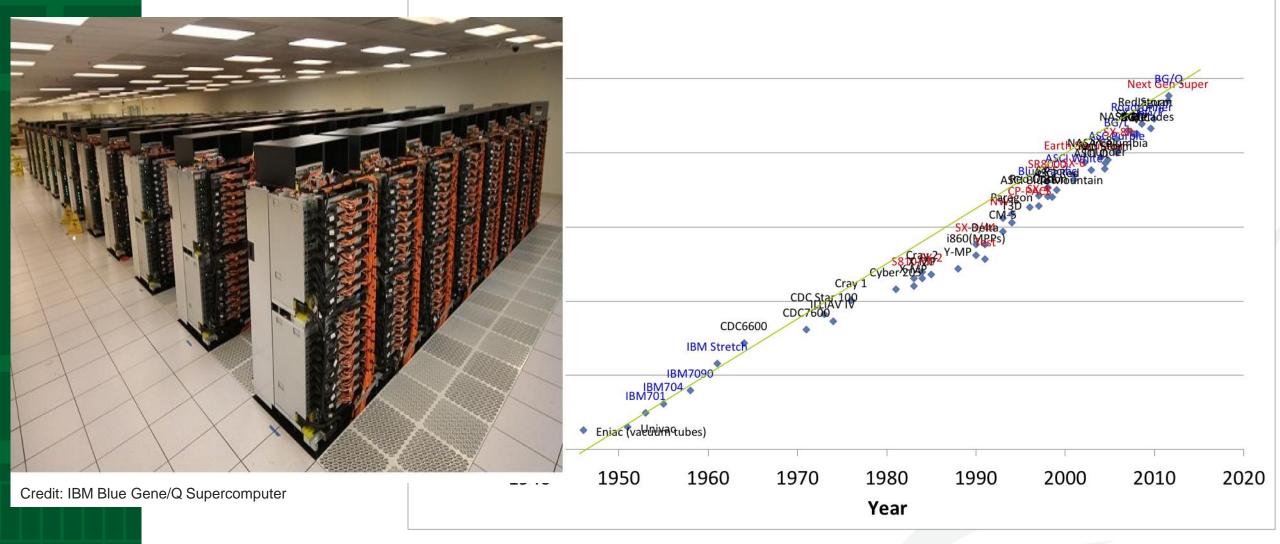
Overhead on Higher Accuracy

Size of machine learning model also increases exponentially



Xu, Xiaowei, et al. "Scaling for edge inference of deep neural networks." Nature Electronics 1.4 (2018): 216.

Race of Computer Powers Enables ML



Machine Learning on the Edge

CAMERA (USB OR PI-CAMERA)

Why on the Edge?

Latency Problem

- Delay & Latency
- Speed
- WiFi Access

Privacy Leakage



- Data uploaded to the server
- Privacy concerns

Cost/energy efficiency considerations

Why on the Edge?

Al chip bearing artificial intelligence algorithm, billion dollar market opportunity

Big data, Maturing algorithm,
Core processor for AI Chip is the key

Data

Calculation

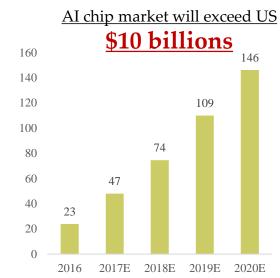
Hardware

 Massie data and frequent human computer interaction

 Engineering methods and simulation methods require the use of convolutions.

 Insufficient calculation, AI chips provide computing power: GPU, FPGA, ASIC, TPU





14.6 billions Smart end devices

Apple, Qualcomm, Spreadtrum, HiSilicon, Mediatek, annual volume

billions Home appliance

Smart appliance, digital TV, set top box, game console, VR/AR annual volume

200+ billions Autopilot

ADAS chip market potential

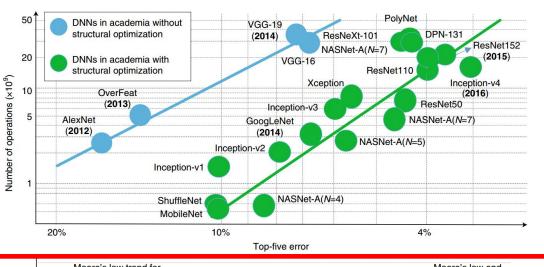
Global Al Chip Market is Expanding!

Source: CCID, NVIDIA, Intel, gartner, CITIC Securities

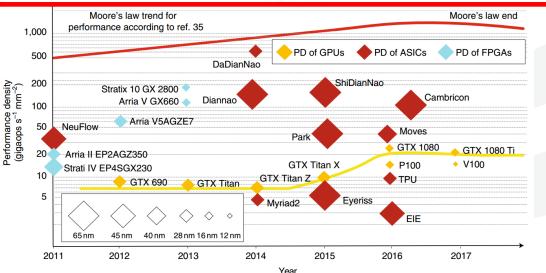
Challenges in ML on Edge

Computing performance gap

Number of DNN **operations** increases exponentially



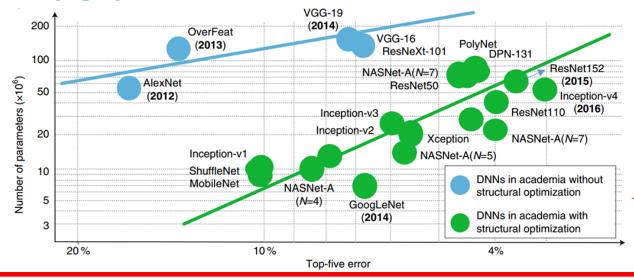
Performance density almost stops increasing



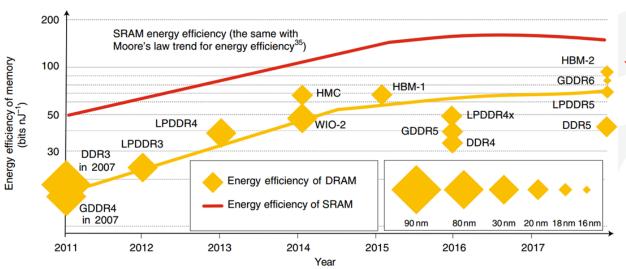
Challenges in ML on Edge

Storage energy efficiency gap

Number of DNN parameters increases exponentially

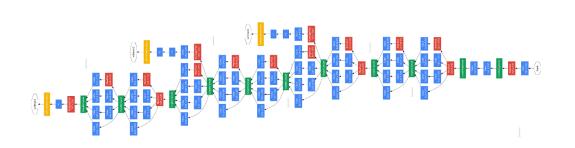


Energy efficiency of memory almost stops increasing



Course Overview

Open question on Machine Learning for Embedded Systems!



Machine Learning

- High computation complexity
- High storage complexity

V.S.

Embedded Systems

- Low power
- Small on-chip memory
- Low bandwidth
- Real-time requirements

How to overcome the limitations of embedded systems?

Software side: AI/ML/DL?

Artificial Intelligence (AI)

[Definition] Al is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals, which involves consciousness and emotionality.

Software side: AI/ML/DL?

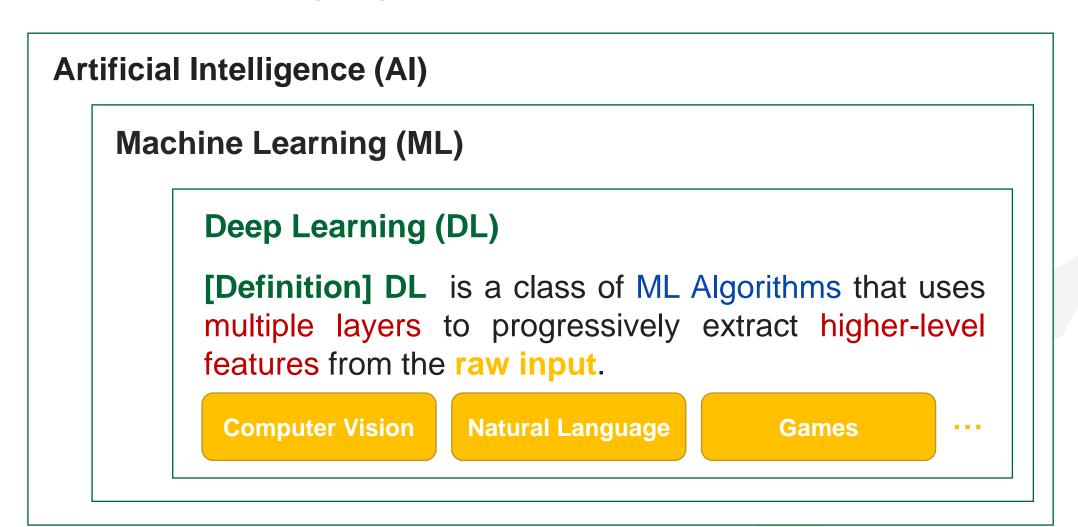
Artificial Intelligence (AI)

Machine Learning (ML)

[Definition] ML is the study of computer algorithms that improve automatically through experience and by the use of data. It is seen as a part of AI.

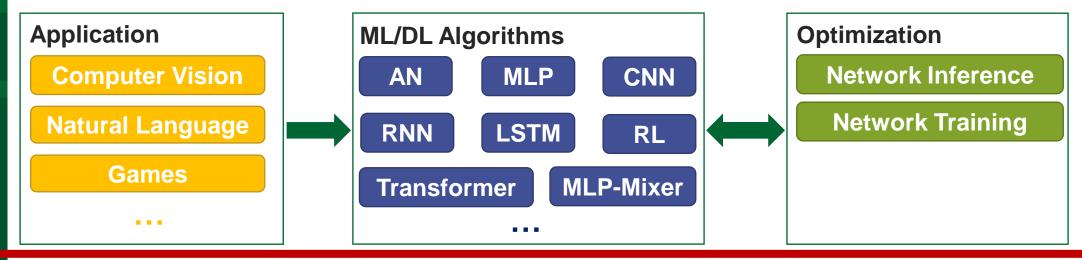
ECE 527: Learning From Data

Software side: AI/ML/DL?



Overview: software side

Software



High Accuracy

Hardware side: from cloud to edge

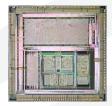
ECE 350: Embedded Systems and Hardware Interfaces

Cloud GPU/CPU

General Purpose Computing

Microcontroller

Customized Computing



FPGA

Field-Programmable Gate Array

ASIC

Application Specifical Integrate Circuit

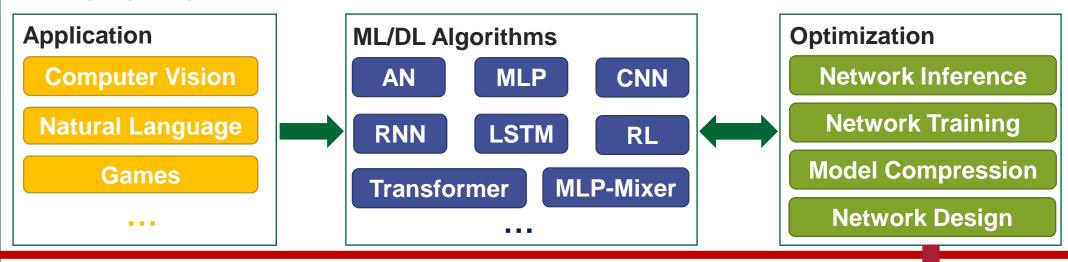
ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

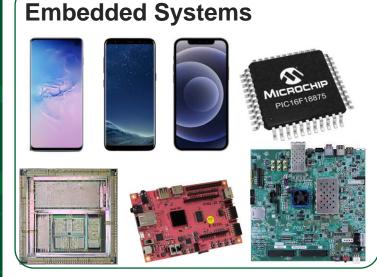
29 | George Mason University

Overview

Software



Hardware



ECE 618: Hardware Accelerators for Machine Learning

Low-Power

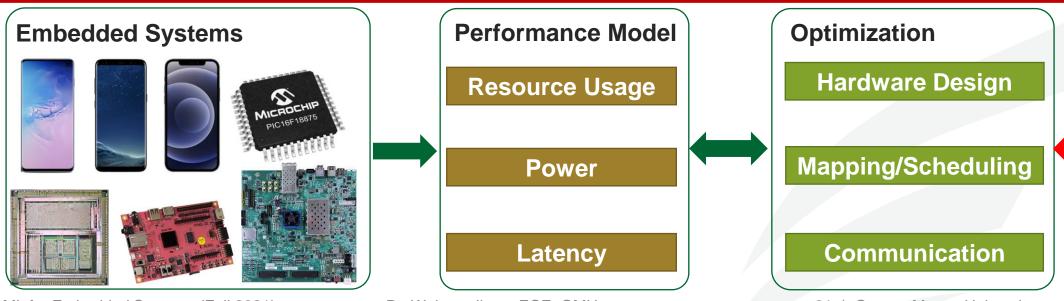
Low-Latency

Overview

Optimization ML/DL Algorithms Application Computer Vision Network Inference MLP CNN AN Natural Language **Network Training LSTM** RNN RL **Model Compression** Games **MLP-Mixer Transformer Network Design** . . .

Hardware

Software



ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

George Mason University

Three Sections

SECTION I: Introduction of Machine Learning and Deep Neural Networks

Date	Topic
Week 1	Course Information & Introduction to Machine Learning
Week 2	Train Neural Networks
Week 3	Deep Convolutional Neural Networks (CNN)
Week 4	Natural Langue Processing
Week 5	Reinforcement Learning

Lecture and Lab

SECTION II: Automated Neural Network Design

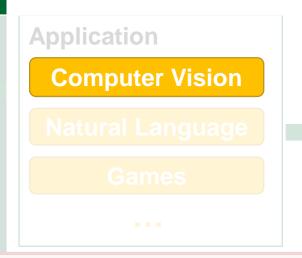
Date	Торіс
Week 6	ML Accelerator Design (1)
Week 7	ML Accelerator Design (2)
Week 8	Model Compression
Week 9	Neural Architecture Search (1)
Week 10	Neural Architecture Search (2)

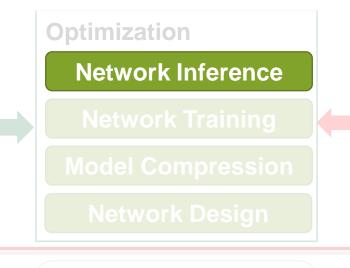
SECTION III: Optimization of both ML/DNN and Hardware Design

Date	Topic
Week 11	Hardware-Aware Neural Architecture Search
Week 12	HW/SW Co-Design with Neural Architecture Search (1)
Week 13	HW/SW Co-Design with Neural Architecture Search (2)
Week 14	Course Project Demonstration

Week 1: Introduction to Artificial Neuron and MLP

Software





Hardware

Power

Latency

Hardware Design

Mapping/Scheduling

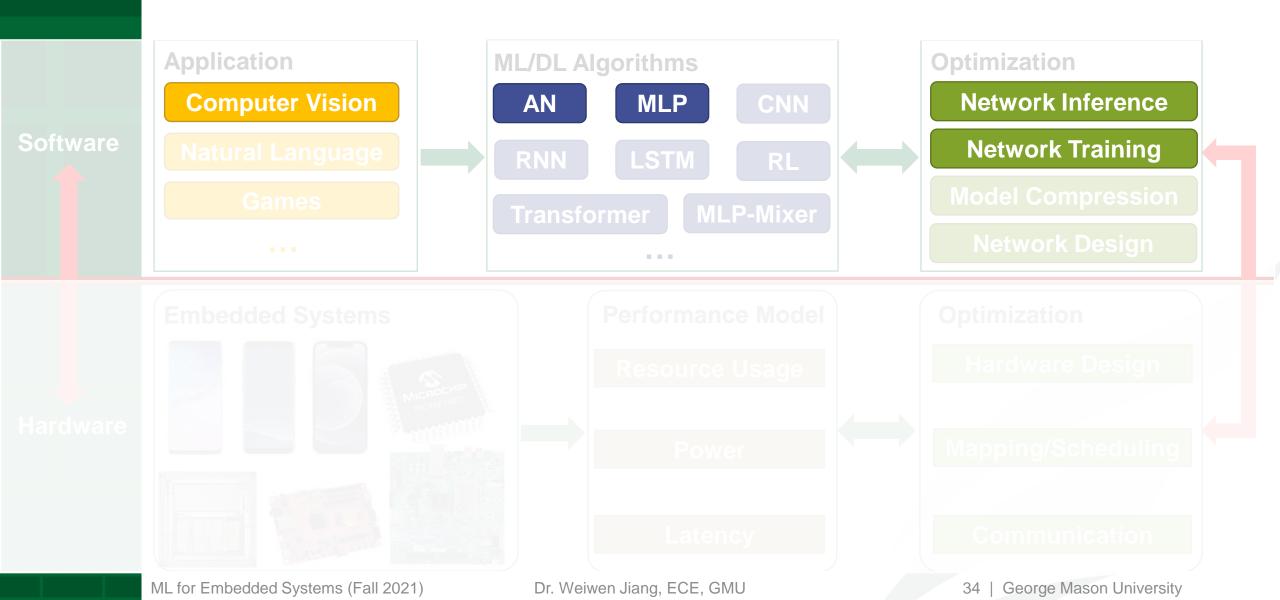
Communication

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

33 | George Mason University

Week 2: From Inference to Training



Week 3: From MLP to CNN

Application ML/DL Algorithms **Optimization Computer Vision Network Inference** CNN AN MLP **Network Training**

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

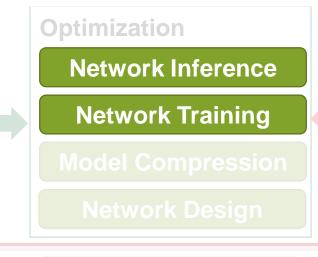
35 | George Mason University

Week 4: From CV to NLP

Application ML/DL Algorithms **Optimization Network Inference** Natural Language **Network Training** RNN **LSTM Transformer** ML for Embedded Systems (Fall 2021) Dr. Weiwen Jiang, ECE, GMU George Mason University

Week 5: From Supervised Learning to Reinforcement Learning

Software



Hardware

Resource Usage

Power

Latency

Hardware Design

Mapping/Scheduling

Communication

Three Sections

SECTION I: Introduction of Machine Learning and Deep Neural Networks

Date	Topic
Week 1	Course Information & Introduction to Machine Learning
Week 2	Train Neural Networks
Week 3	Deep Convolutional Neural Networks (CNN)
Week 4	Natural Langue Processing
Week 5	Reinforcement Learning

SECTION II: Automated Neural Network Design

Date	Topic
Week 6	ML Accelerator Design (1)
Week 7	ML Accelerator Design (2)
Week 8	Model Compression
Week 9	Neural Architecture Search (1)
Week 10	Neural Architecture Search (2)

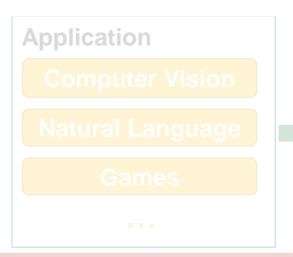
Lecture, presentation and Lab

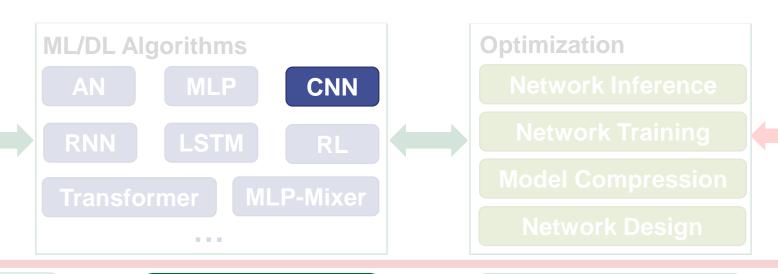
SECTION III: Optimization of both ML/DNN and Hardware Design

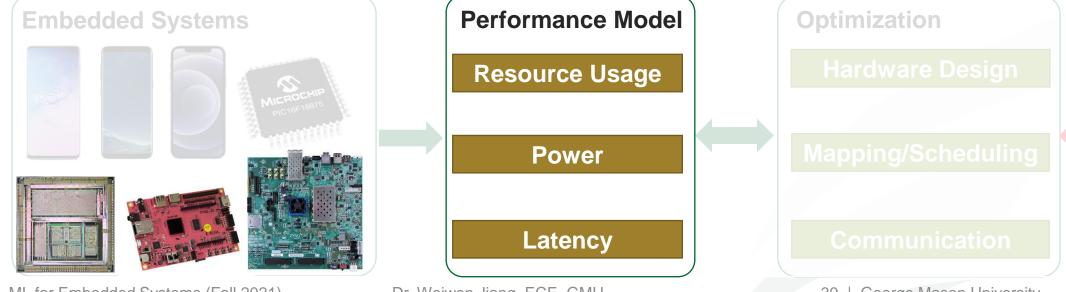
Date	Topic
Week 11	Hardware-Aware Neural Architecture Search
Week 12	HW/SW Co-Design with Neural Architecture Search (1)
Week 13	HW/SW Co-Design with Neural Architecture Search (2)
Week 14	Course Project Demonstration

Week 6-7: ML Accelerator Design

Software







ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

9 | George Mason University

Week 8: Model Compression

Application ML/DL Algorithms **Optimization Computer Vision** CNN MLP AN Natural Language LSTM RNN **Model Compression**

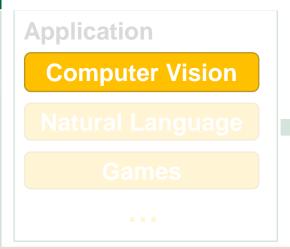
Dr. Weiwen Jiang, ECE, GMU

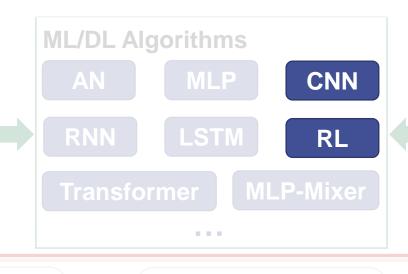
George Mason University

ML for Embedded Systems (Fall 2021)

Week 9-10: Neural Architecture Search

Software





Hardware

Performance Model
Resource Usage
Power

Latency

Hardware Design

Mapping/Scheduling

Communication

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

1 | George Mason University

Three Sections

SECTION I: Introduction of Machine Learning and Deep Neural Networks

Date	Topic
Week 1	Course Information & Introduction to Machine Learning
Week 2	Train Neural Networks
Week 3	Deep Convolutional Neural Networks (CNN)
Week 4	Natural Langue Processing
Week 5	Reinforcement Learning

SECTION II: Automated Neural Network Design

Date	Topic
Week 6	ML Accelerator Design (1)
Week 7	ML Accelerator Design (2)
Week 8	Model Compression
Week 9	Neural Architecture Search (1)
Week 10	Neural Architecture Search (2)

SECTION III: Optimization of both ML/DNN and Hardware Design

Date	Topic
Week 11	Hardware-Aware Neural Architecture Search
Week 12	HW/SW Co-Design with Neural Architecture Search (1)
Week 13	HW/SW Co-Design with Neural Architecture Search (2)
Week 14	Course Project Demonstration

Lecture, presentation and Lab

Week 11: Hardware-Aware Neural Architecture Search

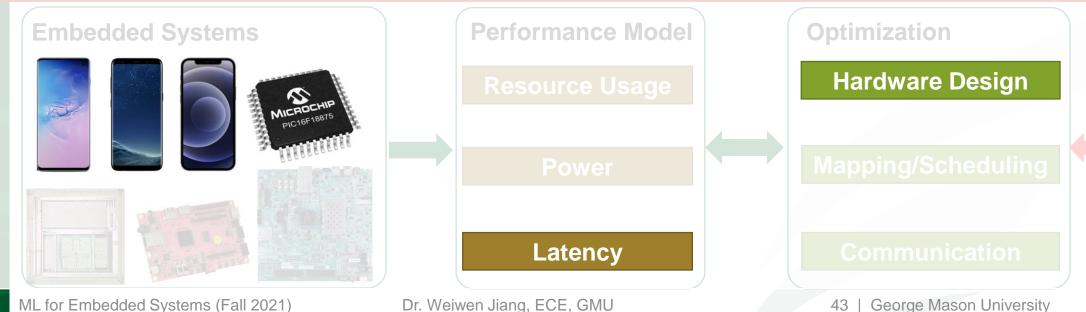
Software

Application
Computer Vision
Natural Language
Games

ML/DL Algorithms
AN MLP CNN
RNN LSTM RL
Transformer MLP-Mixer

Optimization
Network Inference
Network Training
Model Compression
Network Design

Hardware



Week 12-14: HW/SW Co-Design with Neural Architecture Search

Software

Application
Computer Vision
Natural Language
Games

ML/DL Algorithms
AN MLP CNN
RNN LSTM RL
Transformer MLP-Mixer

Optimization
Network Inference
Network Training
Model Compression
Network Design

Hardware

Performance Model

Resource Usage

Power

Latency

Optimization

Hardware Design

Mapping/Scheduling

Communication

Invited Special Guest

SECTION I: Introduction of Machine Learning and Deep Neural Networks

Date	Торіс
Week 1	Course Information & Introduction to Machine Learning
Week 2	Train Neural Networks
Week 3	Deep Convolutional Neural Networks (CNN)
Week 4	Natural Langue Processing
Week 5	Reinforcement Learning

SECTION II: Automated Neural Network Design

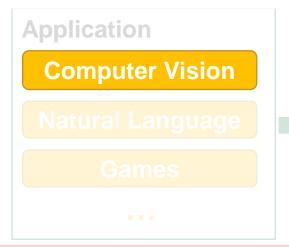
Date	Торіс	
Week 6	ML Accelerator Design (1)	→ UIUC
Week 7	ML Accelerator Design (2)	
Week 8	Model Compression ————	Northeastern
Week 9	Neural Architecture Search (1)	
Week 10	Neural Architecture Search (2)	

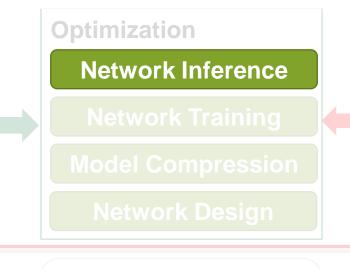
SECTION III: Optimization of both ML/DNN and Hardware Design

Date	Topic		
Week 11	Hardware-Aware Neural Architecture Search		
Week 12	HW/SW Co-Design with Neural Architecture Search (1)	·	Facebook
Week 13	HW/SW Co-Design with Neural Architecture Search (2)		Harvard
Week 14	Course Project Demonstration		

Introduction to Artificial Neuron and MLP

Week 1: Introduction to Neural Network





ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

George Mason University

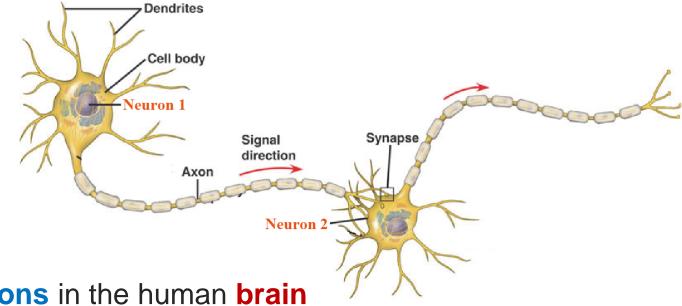
Why Neural Networks

- An emulation of the biological neural systems
 - Parallel computation
 - Adaptive connections
- Very different style from sequential computation
 - Should be good for things that brains are good at (e.g., vision)
 - Should be bad for things that brains are bad at (e.g., 23 x 7!)
- To solve practical problems by using novel learning algorithms inspired by the brain
 - Learning algorithms can be very useful even if they are not how the brain actually works.

Biological Neuron

Human intelligence reside

in the brain:



- Approximately 86 billion neurons in the human brain
- The brain is a **network** of **neurons**, connected with nearly $10^{14} 10^{15}$ synapses

How to equip intelligence in the machine?

- To understand how the brain network is constructed
- To mimic the brain

Biological Neuron

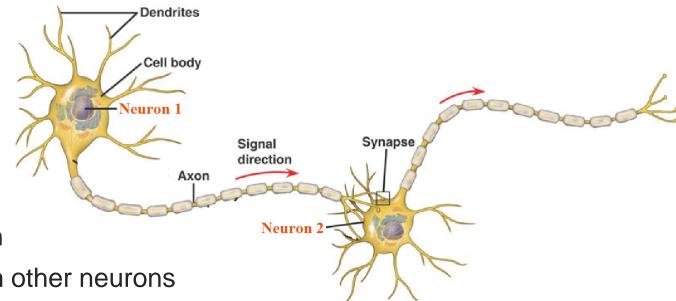
Neurons work together:

- Cell body process the information
- Dendrites receive messages from other neurons
- Axon transmit the output to many smaller branches
- Synapses are the contact points between axon (Neuron 1) and dendrites (Neuron 2) for message passing

Cell body receives input signal from **dendrites** and produce output signal along **axon**, which interact with the next neurons via **synaptic weights**

Synaptic weights are **learnable** to perform useful computations

(e.g., Recognizing objects, understanding language, making plans, controlling the body.)

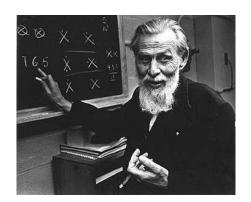


Artificial Neuron Design

- Idealized neuron models
 - Idealization removes complicated details that are not essential for understanding the main principles.
 - It allows us to apply mathematics and to make analogies.

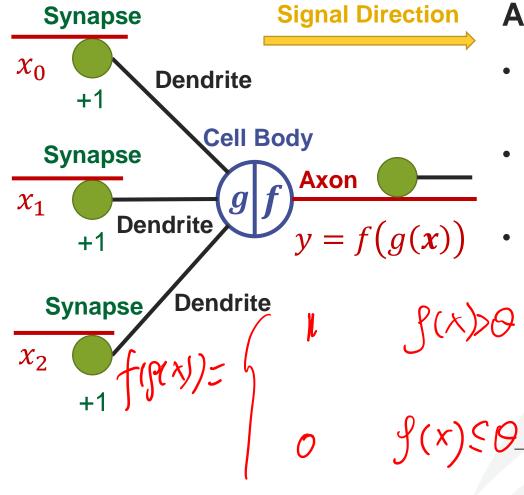
McCulloch-Pitts (MP) Neuron

The first computational model of a biological neuron @ 1943



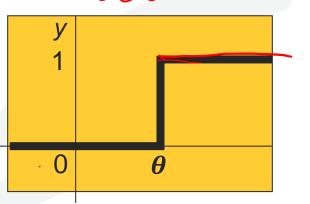
Warren McCulloch

Walter Pitts



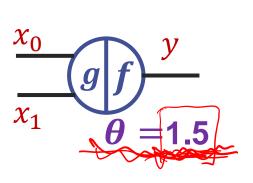
Assumptions:

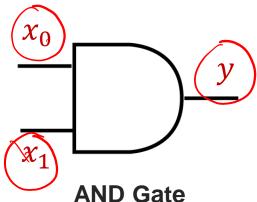
- Binary devices (i.e., $x_i \in \{0,1\}$ and $y \in \{0,1\}$)
- Identical synaptic weights (i.e., +1)
- Activation function f has a fixed threshold θ



McCulloch-Pitts Neuron

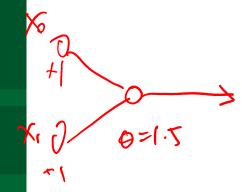
Boolean function 'AND' can be implemented by using MP Neuron



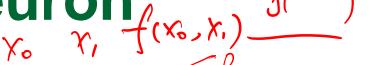


x_0	x_1	y
0	0	0
0	1	0
1	0	
1	1	1

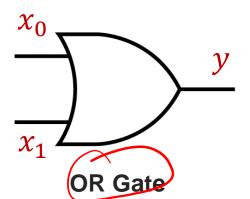
00 0x4)+ 0x(+1)=
f(00)=0 -) 0
f(0,1)=1->0
1(1,0)=1
f(1,1)=2 ->1 [2)
$(x) = \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases}$



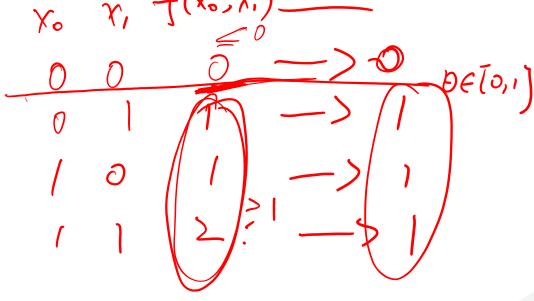
McCulloch-Pitts Neuron



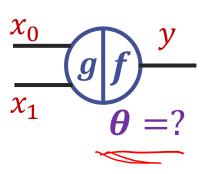
$$\underbrace{x_0}_{x_1} \underbrace{g f}_{\theta} \underbrace{y}_{=?}$$

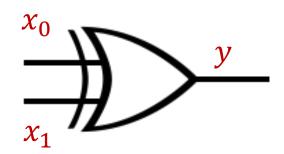


x_0	x_1	y
0	0	0
0	1	1
1	0	1
1	1	1



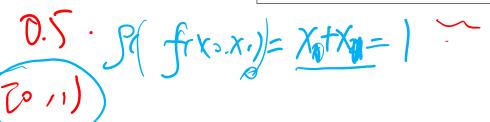
McCulloch-Pitts Neuron

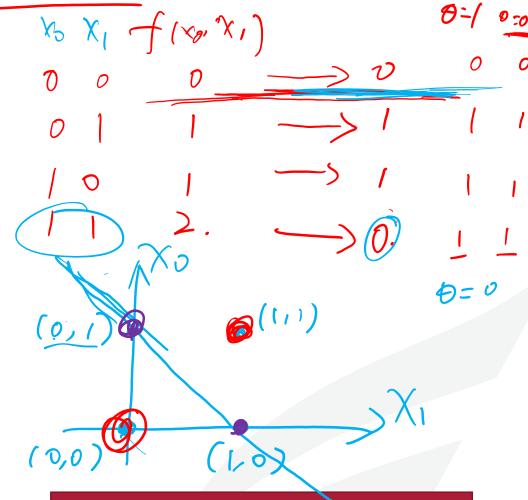




XOR Gate

x_0	x_1	y
0	0	0
0	1	1
1	0	1
1	1	0





MP Neuron is limited to only solve linearly separable functions!

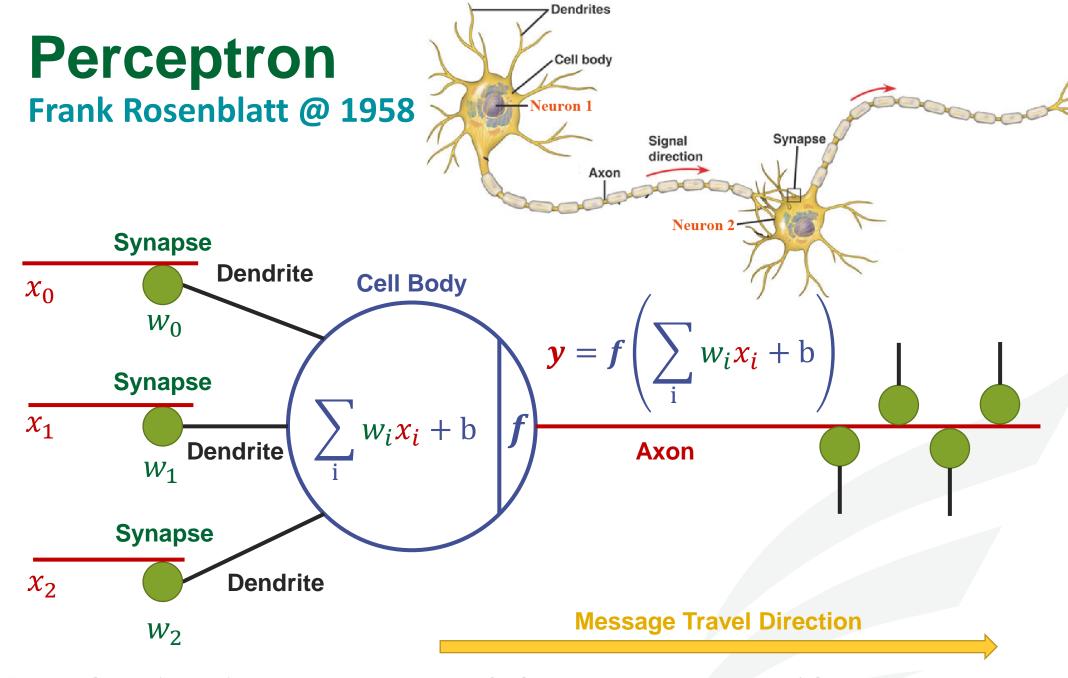
Artificial Neuron Design

Idealized neuron models

- Idealization removes complicated details that are not essential for understanding the main principles.
- It allows us to apply mathematics and to make analogies.

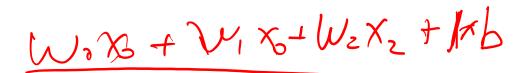
Break the limitations on MP Neuron

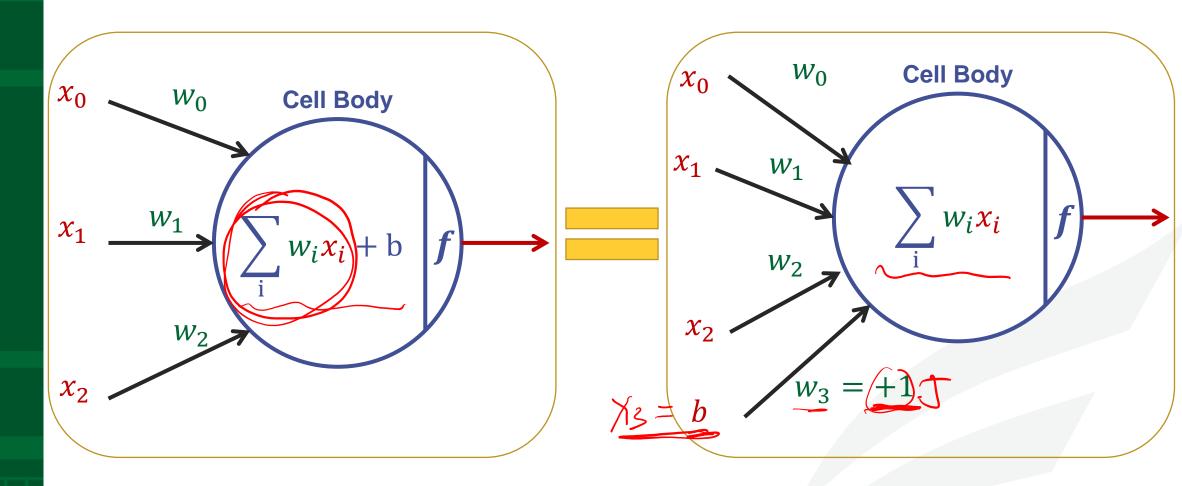
- What about non-boolean inputs (say, real number)?
- What if we want to assign more weight (importance) to some inputs?
- What about functions which are not linearly separable?
- Do we always need to hand code the threshold?



Perceptron

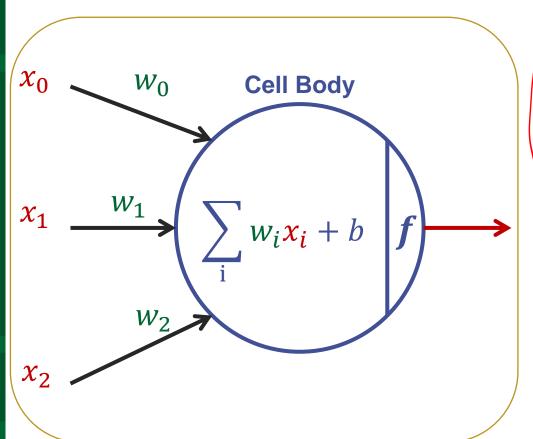
What is Bias b?

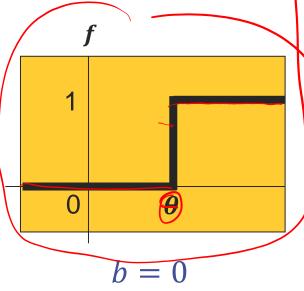




Perceptron

Effect of bias b on Threshold Step activation function.





$$z = \sum_{i} x_i w_i$$

$$y = \begin{cases} 1 & if \ z > \theta \\ 0 & otherwise \end{cases}$$



$$b = \overline{\theta}$$

$$z = \sum_{i} x_i w_i - \theta$$

$$y = \begin{cases} 1 & if \ z > \mathbf{0} \\ 0 & otherwise \end{cases}$$

Perceptron v.s. MP Neuron

Perceptron

$$y = \begin{cases} 1 & if \sum_{i} x_i w_i + b > \mathbf{0} \\ 0 & otherwise \end{cases}$$

MP Neuron

$$y = \begin{cases} 1 & if \sum_{i} x_i > \theta \\ 0 & otherwise \end{cases}$$

In Perceptron: the inputs can be real numbers; the weights (including threshold) can be learned/trained.

In Perceptron: like MP Neuron, the Perceptron separates the input space into two halves. However, all inputs producing 1 lie on one side, and those producing 0 lie on the other side.

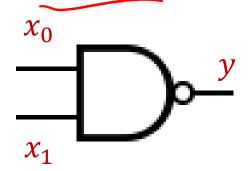
===> A single perceptron can still **only used to implement linearly separable functions**, but not for XOR-like function.

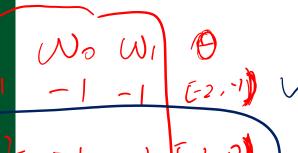
Perceptron

f(x, Y,)- W, X,+ W, Y,

Boolean function 'NAND' can be implemented

x_0	y
	(g f)
x_1	$\theta = ?$





NAND	Gate
-------------	------

^	x_0	x_1	y
	0	-0	1
	0	1	1
	1	0	1
	1	1	0

	γ_{\circ}	X_{l}	
	0	0	
	0	١	-2 -)
	1	0	
	(1	- 6 E[-2,71) - 6 E[-4,-2]
٦	(fix.	x,))= .	
	`	/	f(x0x1) = -1.5

Artificial Neuron Design

Idealized neuron models

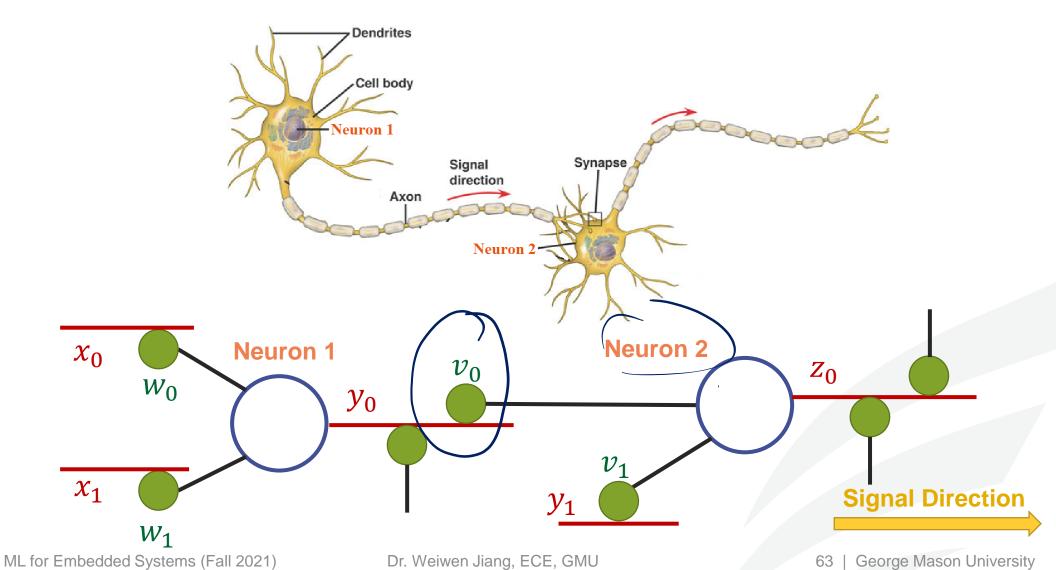
- Idealization removes complicated details that are not essential for understanding the main principles.
- It allows us to apply mathematics and to make analogies.

Break the limitations on MP Neuron

- What about non-boolean inputs (say, real number)?
- What if we want to assign more weight (importance) to some inputs?
- What about functions which are not linearly separable ? ? => MLP
- Do we always need to hand code the threshold? ? => Training

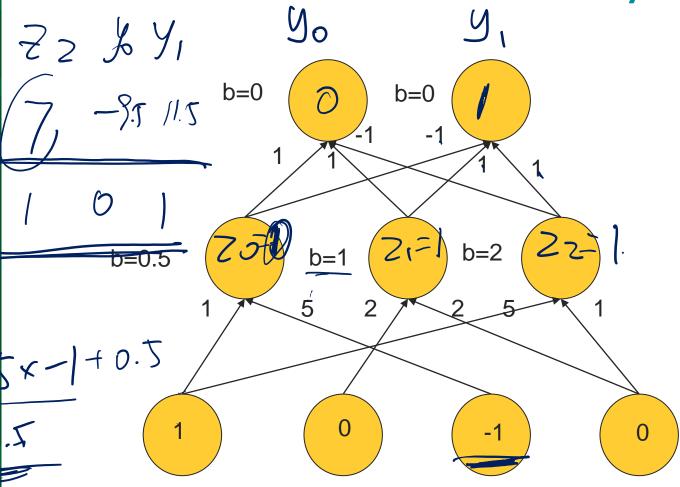
Multi-Layer Perceptron (MLP)

Connect two neurons



Multi-Layer Perceptron (MLP)

Connect more neurons and more layers



$$\int \left(\int (\chi_0, \chi_0) \right)$$

Output Layer (Layer 3)

Hidden Layer (Layer 2)

Input Layer (Layer 1)

Lab 1: Introducing Yourself and Implementing XOR using MLP on Colab

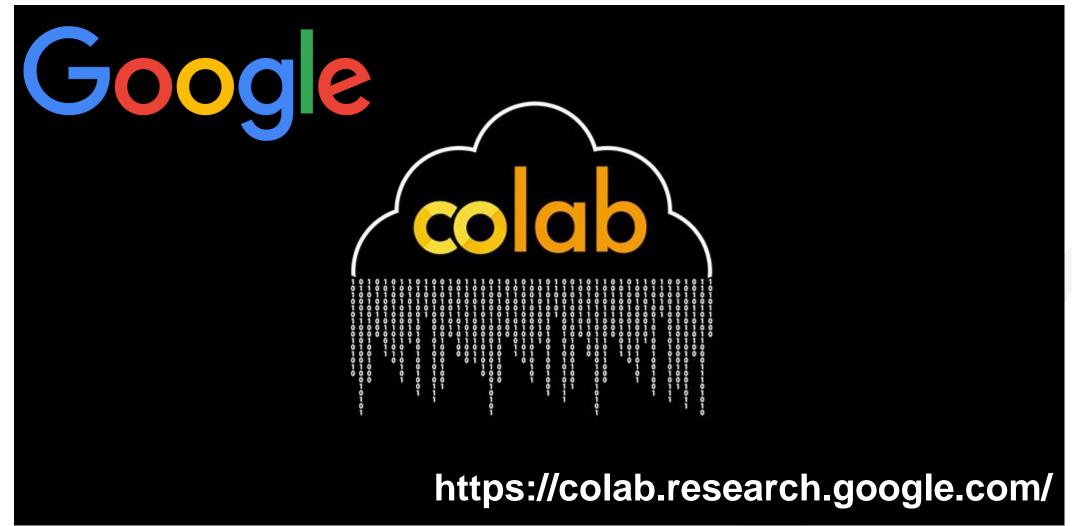
Assignments and Related Documents:

https://jqub.github.io/2021/09/01/ML4Emb/

Due Date: Next Friday (09/03/2021) by 1 PM

• Please take this chance to evaluate the required programming background and the required bandwidth to decide whether keep or drop this course.

Programming Platform



GMU.EDU

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000