
Follow 573K Followers

McCulloch-Pitts Neuron — Mankind’s First
Mathematical Model Of A Biological Neuron

Akshay L Chandra Jul 24, 2018 · 10 min read

It is very well known that the most fundamental unit of deep neural networks is called

an artificial neuron/perceptron. But the very first step towards the perceptron we use

today was taken in 1943 by McCulloch and Pitts, by mimicking the functionality of a

biological neuron.

Note: The concept, the content, and the structure of this article were largely based on the

awesome lectures and the material offered by Prof. Mitesh M. Khapra on NPTEL’s Deep

Learning course. Check it out!

Biological Neurons: An Overly Simplified Illustration

Open in app

https://towardsdatascience.com/?source=post_page-----5fdf65ac5dd1--------------------------------
https://towardsdatascience.com/followers?source=post_page-----5fdf65ac5dd1--------------------------------
https://medium.com/@acl21?source=post_page-----5fdf65ac5dd1--------------------------------
https://medium.com/@acl21?source=post_page-----5fdf65ac5dd1--------------------------------
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1?source=post_page-----5fdf65ac5dd1--------------------------------
https://www.cse.iitm.ac.in/~miteshk/
http://nptel.ac.in/
https://onlinecourses.nptel.ac.in/noc18_cs41/preview
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F5fdf65ac5dd1&~feature=LiOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----5fdf65ac5dd1--------------------------------
https://medium.com/?source=post_page-----5fdf65ac5dd1--------------------------------


A Biological Neuron — Wikipedia

Dendrite: Receives signals from other neurons

Soma: Processes the information

Axon: Transmits the output of this neuron

Synapse: Point of connection to other neurons

Basically, a neuron takes an input signal (dendrite), processes it like the CPU (soma),

passes the output through a cable like structure to other connected neurons (axon to

synapse to other neuron’s dendrite). Now, this might be biologically inaccurate as there

is a lot more going on out there but on a higher level, this is what is going on with a

neuron in our brain — takes an input, processes it, throws out an output.

Our sense organs interact with the outer world and send the visual and sound

information to the neurons. Let's say you are watching Friends. Now the information

your brain receives is taken in by the “laugh or not” set of neurons that will help you

make a decision on whether to laugh or not. Each neuron gets fired/activated only when

its respective criteria (more on this later) is met like shown below.

Not real.

https://en.wikipedia.org/wiki/Neuron


Of course, this is not entirely true. In reality, it is not just a couple of neurons which

would do the decision making. There is a massively parallel interconnected network of

10¹¹ neurons (100 billion) in our brain and their connections are not as simple as I

showed you above. It might look something like this:

Still not real but closer.

Now the sense organs pass the information to the first/lowest layer of neurons to process

it. And the output of the processes is passed on to the next layers in a hierarchical

manner, some of the neurons will fire and some won’t and this process goes on until it

results in a final response — in this case, laughter.

This massively parallel network also ensures that there is a division of work. Each

neuron only fires when its intended criteria is met i.e., a neuron may perform a certain

role to a certain stimulus, as shown below.

Division of work

It is believed that neurons are arranged in a hierarchical fashion (however, many

credible alternatives with experimental support are proposed by the scientists) and each



layer has its own role and responsibility. To detect a face, the brain could be relying on

the entire network and not on a single layer.

Sample illustration of hierarchical processing. Credits: Mitesh M. Khapra’s lecture slides

Now that we have established how a biological neuron works, lets look at what

McCulloch and Pitts had to offer.

Note: My understanding of how the brain works is very very very limited. The above

illustrations are overly simplified.

McCulloch-Pitts Neuron
The first computational model of a neuron was proposed by Warren MuCulloch

(neuroscientist) and Walter Pitts (logician) in 1943.



This is where it all began..

It may be divided into 2 parts. The first part, g takes an input (ahem dendrite ahem),

performs an aggregation and based on the aggregated value the second part, f makes a

decision.

Lets suppose that I want to predict my own decision, whether to watch a random

football game or not on TV. The inputs are all boolean i.e., {0,1} and my output variable

is also boolean {0: Will watch it, 1: Won’t watch it}.

So, x_1 could be isPremierLeagueOn (I like Premier League more)

x_2 could be isItAFriendlyGame (I tend to care less about the friendlies)

x_3 could be isNotHome (Can’t watch it when I’m running errands. Can I?)

x_4 could be isManUnitedPlaying (I am a big Man United fan. GGMU!) and so on.

These inputs can either be excitatory or inhibitory. Inhibitory inputs are those that have

maximum effect on the decision making irrespective of other inputs i.e., if x_3 is 1 (not

home) then my output will always be 0 i.e., the neuron will never fire, so x_3 is an

inhibitory input. Excitatory inputs are NOT the ones that will make the neuron fire on

their own but they might fire it when combined together. Formally, this is what is going

on:



We can see that g(x) is just doing a sum of the inputs — a simple aggregation. And theta

here is called thresholding parameter. For example, if I always watch the game when the

sum turns out to be 2 or more, the theta is 2 here. This is called the Thresholding Logic.

Boolean Functions Using M-P Neuron
So far we have seen how the M-P neuron works. Now lets look at how this very neuron

can be used to represent a few boolean functions. Mind you that our inputs are all

boolean and the output is also boolean so essentially, the neuron is just trying to learn a

boolean function. A lot of boolean decision problems can be cast into this, based on

appropriate input variables— like whether to continue reading this post, whether to

watch Friends after reading this post etc. can be represented by the M-P neuron.

M-P Neuron: A Concise Representation

This representation just denotes that, for the boolean inputs x_1, x_2 and x_3 if the g(x)

i.e., sum ≥ theta, the neuron will fire otherwise, it won’t.

AND Function



An AND function neuron would only fire when ALL the inputs are ON i.e., g(x) ≥ 3 here.

OR Function

I believe this is self explanatory as we know that an OR function neuron would fire if

ANY of the inputs is ON i.e., g(x) ≥ 1 here.

A Function With An Inhibitory Input



Now this might look like a tricky one but it’s really not. Here, we have an inhibitory input

i.e., x_2 so whenever x_2 is 1, the output will be 0. Keeping that in mind, we know that

x_1 AND !x_2 would output 1 only when x_1 is 1 and x_2 is 0 so it is obvious that the

threshold parameter should be 1.

Lets verify that, the g(x) i.e., x_1 + x_2 would be ≥ 1 in only 3 cases:

Case 1: when x_1 is 1 and x_2 is 0


Case 2: when x_1 is 1 and x_2 is 1


Case 3: when x_1 is 0 and x_2 is 1

But in both Case 2 and Case 3, we know that the output will be 0 because x_2 is 1 in

both of them, thanks to the inhibition. And we also know that x_1 AND !x_2 would

output 1 for Case 1 (above) so our thresholding parameter holds good for the given

function.

NOR Function

For a NOR neuron to fire, we want ALL the inputs to be 0 so the thresholding parameter

should also be 0 and we take them all as inhibitory input.

NOT Function



For a NOT neuron, 1 outputs 0 and 0 outputs 1. So we take the input as an inhibitory

input and set the thresholding parameter to 0. It works!

Can any boolean function be represented using the M-P neuron? Before you answer that,

lets understand what M-P neuron is doing geometrically.

Geometric Interpretation Of M-P Neuron
This is the best part of the post according to me. Lets start with the OR function.

OR Function
We already discussed that the OR function’s thresholding parameter theta is 1, for

obvious reasons. The inputs are obviously boolean, so only 4 combinations are possible

— (0,0), (0,1), (1,0) and (1,1). Now plotting them on a 2D graph and making use of the

OR function’s aggregation equation 


i.e., x_1 + x_2 ≥ 1 using which we can draw the decision boundary as shown in the

graph below. Mind you again, this is not a real number graph.

We just used the aggregation equation i.e., x_1 + x_2 =1 to graphically show that all

those inputs whose output when passed through the OR function M-P neuron lie ON or

ABOVE that line and all the input points that lie BELOW that line are going to output 0.



Voila!! The M-P neuron just learnt a linear decision boundary! The M-P neuron is

splitting the input sets into two classes — positive and negative. Positive ones (which

output 1) are those that lie ON or ABOVE the decision boundary and negative ones

(which output 0) are those that lie BELOW the decision boundary.

Lets convince ourselves that the M-P unit is doing the same for all the boolean functions

by looking at more examples (if it is not already clear from the math).

AND Function

In this case, the decision boundary equation is x_1 + x_2 =2. Here, all the input points

that lie ON or ABOVE, just (1,1), output 1 when passed through the AND function M-P

neuron. It fits! The decision boundary works!

Tautology



Too easy, right?

I think you get it by now but what if we have more than 2 inputs?

OR Function With 3 Inputs

Lets just generalize this by looking at a 3 input OR function M-P unit. In this case, the

possible inputs are 8 points — (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1),… you got the

point(s). We can map these on a 3D graph and this time we draw a decision boundary in

3 dimensions.

“Is it a bird? Is it a plane?”

Yes, it is a PLANE!

The plane that satisfies the decision boundary equation x_1 + x_2 + x_3 = 1 is shown

below:



Take your time and convince yourself by looking at the above plot that all the points that

lie ON or ABOVE that plane (positive half space) will result in output 1 when passed

through the OR function M-P unit and all the points that lie BELOW that plane (negative

half space) will result in output 0.

Just by hand coding a thresholding parameter, M-P neuron is able to conveniently

represent the boolean functions which are linearly separable.

Linear separability (for boolean functions): There exists a line (plane) such that all inputs

which produce a 1 lie on one side of the line (plane) and all inputs which produce a 0 lie on

other side of the line (plane).

Limitations Of M-P Neuron
What about non-boolean (say, real) inputs?

Do we always need to hand code the threshold?

Are all inputs equal? What if we want to assign more importance to some inputs?

What about functions which are not linearly separable? Say XOR function.

I hope it is now clear why we are not using the M-P neuron today. Overcoming the

limitations of the M-P neuron, Frank Rosenblatt, an American psychologist, proposed

the classical perception model, the mighty artificial neuron, in 1958. It is more

generalized computational model than the McCulloch-Pitts neuron where weights and

thresholds can be learnt over time.

More on perceptron and how it learns the weights and thresholds etc. in my future posts.

Conclusion



In this article, we briefly looked at biological neurons. We then established the concept

of MuCulloch-Pitts neuron, the first ever mathematical model of a biological neuron. We

represented a bunch of boolean functions using the M-P neuron. We also tried to get a

geometric intuition of what is going on with the model, using 3D plots. In the end, we

also established a motivation for a more generalized model, the one and only artificial

neuron/perceptron model.

Thank you for reading the article.


Live and let live!


A

Sign up for The Variable
By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials
and cutting-edge research to original features you don't want to miss. Take a look.

Get this newsletter
Emails will be sent to wjiang2@nd.edu.
Not you?

Deep Learning Artificial Neuron Biological Neuron Muculloch Pitts Neuron Perceptron

About Write Help Legal

Get the Medium app

https://medium.com/towards-data-science/newsletters/the-variable?source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fmcculloch-pitts-model-5fdf65ac5dd1&collection=Towards%20Data%20Science&collectionId=7f60cf5620c9&newsletterV3=The%20Variable&newsletterV3Id=d6fe9076899&source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://towardsdatascience.com/tagged/deep-learning
https://towardsdatascience.com/tagged/artificial-neuron
https://towardsdatascience.com/tagged/biological-neuron
https://towardsdatascience.com/tagged/muculloch-pitts-neuron
https://towardsdatascience.com/tagged/perceptron
https://medium.com/?source=post_page-----5fdf65ac5dd1--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----5fdf65ac5dd1--------------------------------
https://medium.com/new-story?source=post_page-----5fdf65ac5dd1--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----5fdf65ac5dd1--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----5fdf65ac5dd1--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----5fdf65ac5dd1--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----5fdf65ac5dd1--------------------------------


Follow 573K Followers

Perceptron: The Artificial Neuron (An Essential
Upgrade To The McCulloch-Pitts Neuron)

Akshay L Chandra Aug 11, 2018 · 7 min read

The most fundamental unit of a deep neural network is called an artificial neuron, which

takes an input, processes it, passes it through an activation function like the Sigmoid,

return the activated output. In this post, we are only going to talk about the perceptron

model proposed before the ‘activation’ part came into the picture.

Frank Rosenblatt, an American psychologist, proposed the classical perceptron model in

1958. Further refined and carefully analyzed by Minsky and Papert (1969) — their

model is referred to as the perceptron model. This is a follow-up post to my previous post

on McCulloch-Pitts neuron, I suggest you at least quickly skim through it to better

appreciate the Minsky-Papert contributions.

Citation Note: The concept, the content, and the structure of this article were inspired by the

awesome lectures and the material offered by Prof. Mitesh M. Khapra on NPTEL’s Deep

Learning course. Check it out!

Perceptron

Open in app

https://towardsdatascience.com/?source=post_page-----4d8c70d5cc8d--------------------------------
https://towardsdatascience.com/followers?source=post_page-----4d8c70d5cc8d--------------------------------
https://medium.com/@acl21?source=post_page-----4d8c70d5cc8d--------------------------------
https://medium.com/@acl21?source=post_page-----4d8c70d5cc8d--------------------------------
https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8d?source=post_page-----4d8c70d5cc8d--------------------------------
https://en.wikipedia.org/wiki/Sigmoid_function
http://science.sciencemag.org/content/165/3895/780
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://www.cse.iitm.ac.in/~miteshk/
http://nptel.ac.in/
https://onlinecourses.nptel.ac.in/noc18_cs41/preview
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F4d8c70d5cc8d&~feature=LiOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----4d8c70d5cc8d--------------------------------
https://medium.com/?source=post_page-----4d8c70d5cc8d--------------------------------


The perceptron model, proposed by Minsky-Papert, is a more general computational

model than McCulloch-Pitts neuron. It overcomes some of the limitations of the M-P

neuron by introducing the concept of numerical weights (a measure of importance) for

inputs, and a mechanism for learning those weights. Inputs are no longer limited to

boolean values like in the case of an M-P neuron, it supports real inputs as well which

makes it more useful and generalized.

Now, this is very similar to an M-P neuron but we take a weighted sum of the inputs and

set the output as one only when the sum is more than an arbitrary threshold (theta).

However, according to the convention, instead of hand coding the thresholding

parameter thetha, we add it as one of the inputs, with the weight -theta like shown



below, which makes it learn-able (more on this in my next post — Perceptron Learning

Algorithm).

Consider the task of predicting whether I would watch a random game of football on TV

or not (the same example from my M-P neuron post) using the behavioral data

available. And let's assume my decision is solely dependent on 3 binary inputs (binary

for simplicity).

Here, w_0 is called the bias because it represents the prior (prejudice). A football freak

may have a very low threshold and may watch any football game irrespective of the

league, club or importance of the game [theta = 0]. On the other hand, a selective

viewer like me may only watch a football game that is a premier league game, featuring



Man United game and is not friendly [theta = 2]. The point is, the weights and the bias

will depend on the data (my viewing history in this case).

Based on the data, if needed the model may have to give a lot of importance (high

weight) to the isManUnitedPlaying input and penalize the weights of other inputs.

Perceptron vs McCulloch-Pitts Neuron
What kind of functions can be implemented using a perceptron? How different is it from

McCulloch-Pitts neurons?

From the equations, it is clear that even a perceptron separates the input space into two

halves, positive and negative. All the inputs that produce an output 1 lie on one side

(positive half space) and all the inputs that produce an output 0 lie on the other side

(negative half space).

In other words, a single perceptron can only be used to implement linearly separable

functions, just like the M-P neuron. Then what is the difference? Why do we claim that

the perceptron is an updated version of an M-P neuron? Here, the weights, including the

threshold can be learned and the inputs can be real values.

Boolean Functions Using Perceptron

OR Function — Can Do!
Just revisiting the good old OR function the perceptron way.



Try solving the equations on your own.

The above ‘possible solution’ was obtained by solving the linear system of equations on

the left. It is clear that the solution separates the input space into two spaces, negative

and positive half spaces. I encourage you to try it out for AND and other boolean

function.

Now if you actually try and solve the linear equations above, you will realize that there

can be multiple solutions. But which solution is the best? To more formally define the

‘best’ solution, we need to understand errors and error surfaces, which we will do in my

next post on Perceptron Learning Algorithm.

XOR Function — Can’t Do!
Now let's look at a non-linear boolean function i.e., you cannot draw a line to separate

positive inputs from the negative ones.



Notice that the fourth equation contradicts the second and the third equation. Point is,

there are no perceptron solutions for non-linearly separated data. So the key take away is

that a single perceptron cannot learn to separate the data that are non-linear in nature.

The XOR Affair

In the book published by Minsky and Papert in 1969, the authors implied that, since a single

artificial neuron is incapable of implementing some functions such as the XOR logical

function, larger networks also have similar limitations, and therefore should be dropped.

Later research on three-layered perceptrons showed how to implement such functions,

therefore saving the technique from obliteration.

— Wikipedia

(Optional) Motivation For Sigmoid Neurons
As I mentioned earlier, the artificial neurons we use today are slightly different from the

perceptron we looked at, the difference is the activation function. here. Some might say

that the thresholding logic used by a perceptron is very harsh. For example, if you look at

a problem of deciding if I will be watching a movie or not, based only on one real-valued

input (x_1 = criticsRating) and if the threshold we set is 0.5 (w_0 = -0.5) and w_1= 1

then our setup would look like this:

What would be the decision for a movie with criticsRating = 0.51? Yes!

What would be the decision for a movie with criticsRating = 0.49? No!


http://science.sciencemag.org/content/165/3895/780
https://en.wikipedia.org/wiki/XOR


Some might say that its harsh that we would watch a movie with a rating of 0.51 but not

the one with a rating of 0.49 and this is where Sigmoid comes into the picture. Now

convince yourself that this harsh thresholding is not attributed to just one specific

problem we chose here, it could happen with any or every problem we deal with. It is a

characteristic of the perceptron function itself which behaves like a step function.

There will be this sudden change in the decision (from 0 to 1) when z value crosses the

threshold (-w_0). For most real-world applications we would expect a smoother

decision function which gradually changes from 0 to 1.

Introducing sigmoid neurons where the output function is much smoother than the step

function seems like a logical and obvious thing to do. Mind you that a sigmoid function

is a mathematical function with a characteristic “S”-shaped curve, also called the

sigmoid curve. There are many functions that can do the job for you, some are shown

below:



- Wikipedia

One of the simplest one to work with is the logistic function.

Quick Question: What happens to y when z is infinite? Or when it is -infinite?

We no longer see a sharp transition around the w_0. Also, the output is no longer binary

but a real value between 0 and 1 which can be interpreted as a probability. So instead of

yes/no decision, we get the probability of yes. The output here is smooth, continuous

and differentiable and just how any learning algorithm likes it. To verify this yourself,

please look through the backpropagation concept in Deep Learning.

Conclusion
In this post, we looked at a perceptron, the fundamental unit of deep neural networks.

We also showed with examples how a perceptron, in contrast with the McCulloch-Pitts

neuron, is more generalized and overcomes a few of the pertaining limitations at the

time. We briefly established the motivation for Sigmoid neurons as well.

In my next post, we will closely look at the famous Perceptron Learning Algorithm and try

and get an intuition of why it works, without getting into any of the complex proofs,

https://en.wikipedia.org/wiki/Sigmoid_function
https://towardsdatascience.com/d5db0deab975


along with an implementation of the algorithm in Python from scratch.

Thank you for reading the article.


Live and let live!


A

Photo by Clint Adair on Unsplash

Thanks to Wendy Wong. 

Sign up for The Variable
By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials
and cutting-edge research to original features you don't want to miss. Take a look.

Get this newsletter
Emails will be sent to wjiang2@nd.edu.
Not you?

https://unsplash.com/photos/BW0vK-FA3eg?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://medium.com/towards-data-science/newsletters/the-variable?source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fperceptron-the-artificial-neuron-4d8c70d5cc8d&collection=Towards%20Data%20Science&collectionId=7f60cf5620c9&newsletterV3=The%20Variable&newsletterV3Id=d6fe9076899&source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------


Artificial Neural Network Perceptron Neural Networks Deep Learning Neurons

About Write Help Legal

Get the Medium app

https://towardsdatascience.com/tagged/artificial-neural-network
https://towardsdatascience.com/tagged/perceptron
https://towardsdatascience.com/tagged/neural-networks
https://towardsdatascience.com/tagged/deep-learning
https://towardsdatascience.com/tagged/neurons
https://medium.com/?source=post_page-----4d8c70d5cc8d--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----4d8c70d5cc8d--------------------------------
https://medium.com/new-story?source=post_page-----4d8c70d5cc8d--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----4d8c70d5cc8d--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----4d8c70d5cc8d--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----4d8c70d5cc8d--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----4d8c70d5cc8d--------------------------------

	Lec1_MP_Neuron
	Lec1_Precptron

