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▪ Conclusion
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What Data Can Be Encoded to Quantum Computers, and how?

3 |  George Mason University

• Can we encode an arbitrary number into quantum computer? Is it efficient?

▪ Yes / No

1

1

0

0

Number: 12

Number: 1.5

Number: 0.75

Yes, we can! No, because it uses too many qubits!

This encoding is similar to classical bits, where 

each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)
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• Can we encode an arbitrary number into quantum computer? Is it efficient?

▪ Yes / No

1

1

0

0

Number: 12

Number: 1.5

Number: 0.75

Yes, we can! No, because it uses too many qubits!

This encoding is similar to classical bits, where 

each qubit is regarded as a binary number!

• Can we take use of superposition of qubits to encode data? Is this solution perfect?

▪ Yes / No

0.25 in one qubit

No, (1) data needs in the range of [0,1]!

(2) same complexity O(1) as classical

1-to-1 mapping! (Angle Encoding)

1-to-N mapping! (Boolean Function)

Yes, we can!
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• Can we encode an arbitrary number into quantum computer? Is it efficient?

▪ Yes / No

1

1

0

0

Number: 12

Number: 1.5

Number: 0.75

Yes, we can! No, because it uses too many qubits!

This encoding is similar to classical bits, where 

each qubit is regarded as a binary number!

• Can we take use of superposition of qubits to encode data? Is this solution perfect?

▪ Yes / No

0.25 in one qubit

No, (1) data needs in the range of [0,1]!

(2) same complexity O(1) as classical

1-to-1 mapping! (Angle Encoding)

1-to-N mapping! (Boolean Function)

Yes, we can!

• Can we take use of entanglement of qubits to encode data? Is this solution perfect?

▪ Yes / No

+0.61 −0.35
+0.61 +0.35

Yes, 4 # in 2 qubits No, (1) sum of the square of data need to be 1

(2) may have high cost to encode data

N-to-logN mapping! (Amplitude Encoding)
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Encoding: 1-to-N v.s. 1-to-1 v.s. N-to-logN
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Data Encoding # of Qubit (C v.s. Q) Data Limitation Encoding Complexity

1-to-N O(1) v.s. O(N) Almost No! Low

1-to-1 O(1) v.s. O(1) [0,+1] Low

N-to-logN O(N) v.s. O(logN) [-1,+1] and σ𝑥
2
= 1 High
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Quantum Fourier Transform (1-to-N)
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Problem to be solved: Encoding the binary number represented by states to phase.

𝑄𝐹𝑇 ∗ |𝑎⟩ =
1

2
× 𝑒0 ⋅ |00⟩ + 𝑒

𝜋
2
𝑖 ⋅ |01⟩ + 𝑒𝜋𝑖 ⋅ |10⟩ + 𝑒

3𝜋
2
𝑖 ⋅ |11⟩

𝑄𝐹𝑇 ∗ |𝑎⟩ =
1

𝑁
× 𝑥0 ⋅ |00⟩ + 𝑥1 ⋅ |01⟩ + 𝑥2 ⋅ |10⟩ + 𝑥3 ⋅ |11⟩

𝑥2 = 𝑒
2𝜋𝑖
𝑁

𝑎𝑘 = 𝑒
2𝜋∗𝑎∗𝑘

𝑁
𝑖 = 𝑒

2𝜋∗𝟏∗𝟐
4

𝑖 = 𝑒𝜋𝑖

𝑥3 = 𝑒
2𝜋𝑖
𝑁

𝑎𝑘 = 𝑒
2𝜋∗𝑎∗𝑘

𝑁
𝑖 = 𝑒

2𝜋∗𝟏∗𝟑
4

𝑖 = 𝑒
3𝜋
2
𝑖

𝑥1 = 𝑒
2𝜋𝑖
𝑁

𝑎𝑘 = 𝑒
2𝜋∗𝑎∗𝑘

𝑁
𝑖 = 𝑒

2𝜋∗𝟏∗𝟏
4

𝑖 = 𝑒
1𝜋
2
𝑖

𝑥0 = 𝑒
2𝜋𝑖
𝑁

𝑎𝑘 = 𝑒
2𝜋∗𝑎∗𝑘

𝑁
𝑖 = 𝑒

2𝜋∗𝟏∗𝟎
4

𝑖 = 𝑒0

=>

(note: k=0 since we consider |k⟩ =|00⟩)

(note: k=1 since we consider |k⟩ =|01⟩)

QFT, inspired by the discrete Fourier transform, is the linear

operator defined over an orthonormal basis 0 ,⋯ |𝑁 − 1⟩
of a N-dimensional complex vector space, as

𝒂 ⟶
𝑄𝐹𝑇

𝑎′ =
1

𝑵


𝑘=0

𝑁−1

𝑒
2𝜋𝑖
𝑵 𝒂𝒌 𝒌

Input:

|a⟩ = |01⟩→ a=1

N = 𝟐𝟐 = 𝟒
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Quantum Phase Estimation (1-to-N for Output)
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Problem to be solved: Extract the phase to binary number represented by states.

Why: Difficulty in Measuring the Phase.

How? Given:

• We have the implementation

of operator U.

• 𝑈𝑡 = Repeat the operator U 

for t times

Given a unitary operator U, the algorithm estimates θ in U|Ψ⟩ =𝑒2𝜋iθ |Ψ⟩. Here, |Ψ⟩ is an eigenvector and 𝑒2𝜋iθ is 

the corresponding eigenvalue. Since U is unitary, all of its eigenvalues have a norm of 1.

1

2
(| ⟩0 + | ⟩1 )

| ⟩0 with prob.
1

2

| ⟩1 with prob.
1

2

1

2
𝑒𝑖𝜋/2(| ⟩0 + | ⟩1 )

| ⟩0 with prob.
1

2

| ⟩1 with prob.
1

2
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Quantum Phase Estimation: Example
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|𝚽⟩

1

0

0

0.001 = 1/8https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22,%22H%22,%22H%22,%22X%22],[%22%E

2%80%A2%22,1,1,%22Z^%C2%BC%22],[1,%22%E2%80%A2%22,1,%22Z^%C2%BC%22],[1,%22%E2

%80%A2%22,1,%22Z^%C2%BC%22],[1,1,%22%E2%80%A2%22,%22Z^%C2%BC%22],[1,1,%22%E2%

80%A2%22,%22Z^%C2%BC%22],[1,1,%22%E2%80%A2%22,%22Z^%C2%BC%22],[1,1,%22%E2%80

%A2%22,%22Z^%C2%BC%22],[%22QFT%E2%80%A03%22]]}

θ=
1

8

Given T | ⟩1 = 𝑒2i𝜋θ| ⟩1

T | ⟩1 =
1 0

0 𝑒
i𝜋

4

0
1

= 𝑒
i𝜋

4 | ⟩1
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HHL

11 |  George Mason University

Problem to solve:

Why: Classical has complexity of 𝑶(𝑵𝜿), can quantum reduce the complexity

to 𝑶 𝒍𝒐𝒈 𝑵 𝜿𝟐 . N is the number of variables in the linear system. 𝜿 is a low 

condition number.

How?

Given: 

• Hermitian matrix A

• b 

The problem can be defined as, given a matrix A ∈ℂ 𝑁×𝑁and a vector 𝒃 ∈ ℂ 𝑁，

find 𝒙 ∈ ℂ 𝑁 satisfying A 𝒙 = 𝒃

Ancilla quantum encoding (AQE) 
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Variational Classifier (1-to-N or 1-to-1 or N-to-logN)
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Variational Classifier

Sim et al. "Expressibility and Entangling Capability of Parameterized Quantum 
Circuits for Hybrid Quantum-Classical Algorithms." Advanced Quantum 
Technologies 2.12 (2019): 1900070. 



Review of Quantum Machine Learning Dr. Weiwen Jiang, ECE, GMU

VQC-based Quantum Neural Network

VQC is designed 

motivated by NN

Weights in VQC has 

strong correlation

No non-linearity 

in-between layers
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What’s the complexity? Quantum Advantage?

…

𝑊0

𝑊1

𝑊2

𝑊𝑁−1

𝑥0

𝑥1

𝑥2

𝑥𝑁−1

𝑂

• Classical computer with 1 MAC

𝑇𝑖𝑚𝑒: 𝑂(𝑁)

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): 𝑂(1)

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆: 𝑶(𝑵)

• Classical computer with N MAC

𝑇𝑖𝑚𝑒: 𝑂(1)

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): 𝑂(𝑁)

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆: 𝑶(𝑵)

qubits

circuit length

𝑞0

𝑞1

H

H

X

X

X𝑂

in
p
u
t

Z

Z

• Time-Space Complexity in Quantum computer

𝑇𝑖𝑚𝑒: Circuit Length

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): Qubits

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆 (𝑻 − 𝑺): 𝑸𝒖𝒃𝒊𝒕𝒔 × 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑳𝒆𝒏𝒈𝒕𝒉

• Given that 𝑻 − 𝑺 complexity on classical computer 

is 𝑶 𝑵 , Quantum Advantage is achieved if 𝑻 − 𝑺

complexity on Quantum can be 𝑶(𝒑𝒍𝒐𝒚𝒍𝒐𝒈𝑵) or 

lower. ------- Exponential Speedup!
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• 𝑓 can be any non-linear function, say ReLU

• X is a 0.x1x2x3…xn binary format to hold the intermediate data

[ref 1] Shilu Yan, et al. , Nonlinear quantum neuron: A fundamental building block for quantum neural networks.

[ref 2] F. M. de Paula Neto , et al. , Implementing Any Nonlinear Quantum Neuron, IEEE TNNLS

Apply Boolean Function to Realize Any Non-Linear (1-to-N)

• X- input register

• Y- output register

• f(x) Boolean function

QPE
𝑥 𝑦

𝑖𝑛𝑖𝑡
𝑥 0

𝑈𝑓
𝑥 𝑅𝑒𝐿𝑈(𝑥)

x ReLU(x)

00 0

01 1

10 0

11 0

|x0⟩

|x1⟩

|0⟩ X

Sign

Problem to be solved:
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Apply Boolean Function to Realize Any Non-Linear (1-to-N)

(b) amplitude encoding

n: input data number

p: precision for input

m: precision for output

No Quantum Advantage

(a)

(b)

(c)

(c)  [ref] 

(a) angle encoding

[ref ] F. M. de Paula Neto , et al. , Implementing Any Nonlinear Quantum Neuron, IEEE TNNLS
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Ry(2 𝑤0) Ry(2 𝑤1) Ry(2 b)

𝐼0

𝐼1

A

Quantum Neuron (1-to-1): Linear Part
Problem to be solved (Linear Function):

Classical: Given 𝐼0 , 𝐼1 , … , 𝐼𝑛 , b , 𝑤0 , 𝑤1 , …𝑤𝑛 ,

Output: θ = σi=0
n Ii × 𝑤𝑖 + b

Quantum: Given 𝑝0 , 𝑝1 , … , 𝑝𝑛, Ry(2b) , Ry(2𝑤0) , Ry(2𝑤1) ,…, Ry(2𝑤𝑛)

Output: Ry(2θ) ---- θ is computed on angle.

𝐼1
𝑤1

𝐼0

θ

𝑤0

+b

Example：

operation ‘×’

operation ‘+’

Idea: For 𝐼𝑗 with Prob{𝐼𝑗 = 𝟏 } = 𝑝𝑗

If 𝑝𝑗 = 1, then rotate the output qubit “A” by 2𝑤𝑗; otherwise, don’t rotate A

MAC

(θ)

[ref] Cao, Yudong, et al. "Quantum neuron: an elementary building block for machine learning on quantum computers." arXiv preprint arXiv:1711.11240 (2017).
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Quantum Neuron (1-to-1): Non-Linear Part

Problem to be solved (Non-Linear Function):

Classic:  Given θ,
Output: q(θ) = arctan(𝒕𝒂𝒏𝟐θ)

Quantum: Given Ry(2θ) 

Output: O = Ry(2q(θ)) 

S1: 0𝐴 = 00

S2: I ⊗ Ry(2θ) × 00 = 

cos(θ)
sin(θ)
0
0

−sin(θ)
cos(θ)
0
0

0
0

cos(θ)
sin(θ)

0
0

−sin(θ)
cos(θ)

×

1
0
0
0

= 

cos(θ)
sin(θ)
0
0

S3：

1
0
0
0

0
0
0
1

0
0
0
0

0
1
0
0

×

cos(θ)
sin(θ)
0
0

= 

cos(θ)
0
0

sin(θ)

S4: 

cos(θ)
sin(θ)
0
0

−sin(θ)
cos(θ)
0
0

0
0

cos(θ)
sin(θ)

0
0

−sin(θ)
cos(θ)

×

cos(θ)
0
0

sin(θ)

= 

cos2(θ)
−sin(θ)cos(θ)

sin2(θ)
sin(θ)cos(θ)

Measure A.

𝐴 = 0 : success

𝐴 = 1 ∶ recover and repeat

𝑶𝑨
00
01
10
11

MAC

(θ)

𝑀𝐴𝐶†

(θ)

𝐼0

𝐼1

A

O

S1 S2 S3 S4

cos2(θ)
−sin(θ)cos(θ)

sin2(θ)
sin(θ)cos(θ)

⟶

cos2(θ)
0

sin2(θ)
0

𝑡𝑎𝑛2 θ
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Quantum Neuron (1-to-1): Complexity

[ref] Cao, Yudong, et al. "Quantum neuron: an elementary building block for machine learning on quantum computers." arXiv preprint arXiv:1711.11240 (2017).

Ry(2 𝑤0) Ry(2 𝑤1) Ry(2 b)

𝐼0

𝐼1

A

Input 

features

Number of

Qubits

Number of

Gates

Linear 𝑂(𝑛) 𝑂(𝑛)

Non-linear 𝑂(1) 𝑂(𝑚 ⋅ 𝑛)

n: input data number

m: repeat number

No Quantum Advantage

MAC

(θ)

𝑀𝐴𝐶†

(θ)

𝐼0

𝐼1

A

O

S1 S2 S3 S4

(a) Linear computation (b) Non-linear computation
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Sign Flip on Amplitude for Binary NN (N-to-logN)

binary weights

summation

Non-linear

Problem to be solved (Binary Neural Network):

0

0

H

H Z

0.5

0.5

0.5

0.5

+1

+1

+1

-1

U(W) U(N)

+

[Ref1] Tacchino, Francesco, et al. "An artificial neuron implemented on an actual quantum processor." npj Quantum Information 5.1 (2019): 1-8.

[Ref2] Jiang, Weiwen, Jinjun Xiong, and Yiyu Shi. "When Machine Learning Meets Quantum Computers: A Case Study." 2021 26th Asia and South Pacific 

Design Automation Conference (ASP-DAC). IEEE, 2021.
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Sign Flip on Amplitude (N-to-logN): Complexity

U(W) U(N)

+

Input 

features

Number of

Qubits

Number of

Gates

U(x) 𝑂(𝑙𝑜𝑔N) 𝑶(? )

U(W) 𝑂(𝑙𝑜𝑔N) 𝑶(? )

U(N) 𝑂(1) 𝑂(𝑙𝑜𝑔𝑁)

n: input data number

Potential Quantum Advantage
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Halfway Takeaway
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▪ 3 typical data encoding without losing information

▪ 1-to-N encoding (Boolean Function)

▪ 1-to-1 encoding (Angle Encoding)

▪ N-to-logN encoding (Amplitude Encoding)

▪ Variational Quantum Circuit

▪ Designed based on neural network, but no classical correspondence

▪ Can integrate real-number weights in the circuit

▪ Non-linearity is difficult to be integrated, leading a 1-layer neural network
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Halfway Takeaway

29 |  George Mason University

▪ Quantum-based Neural Network Accelerator

▪ Boolean function-based design

▪ High flexibility

▪ High cost (no quantum advantage)

▪ Angle-based design

▪ Work for specific functions

▪ Neutral cost (still hard to have quantum advantage)

▪ Amplitude-based design

▪ More limitations

▪ Lower cost (potential of quantum advantage)

Input 

features

Number of

Qubits

Number of

Gates

U(x) 𝑂(𝑙𝑜𝑔N) 𝑶(? )

U(W) 𝑂(𝑙𝑜𝑔N) 𝑶(? )

U(N) 𝑂(1) 𝑂(𝑙𝑜𝑔𝑁)

Data Encoding

Weight Embedding

Input 

features

Number of

Qubits

Number of

Gates

Linear 𝑂(𝑛) 𝑂(𝑛)

Non-linear 𝑂(1) 𝑂(𝑚 ⋅ 𝑛)

(a)
(b)
(c)
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QGAN’2018: Framework

(a): A discriminator must determine whether the samples it 

is given are produced by a real source R or a generator G(z) 

equipped with a source of noise z.

(b): discriminator -> quantum discriminator

G(z) -> G( 𝒁 )

output(Real or Fake) -> output( 𝒓𝒆𝒂𝒍 or 𝒇𝒂𝒌𝒆 )

QuGANs:

• R or the parametrized generator G(𝜽𝑮) is applied on an 

initial state 𝟎, 𝝀, 𝒛 defined on the Label R|G, Out R|G and 

Bath R|G.

• The discriminator D(𝜽𝑫) uses the information 𝝆𝝀
𝑹/𝑮

and an 

initial resource state 𝟎, 𝟎, 𝝀 defined on the Out D ,Bath D 

and Label D registers.

• D outputs its answer 𝒓𝒆𝒂𝒍 or 𝒇𝒂𝒌𝒆 in the Out D register.

• The expectation value  𝒁 𝑶𝒖𝒕 𝑫 is proportional to the 

probability that D outputs 𝒓𝒆𝒂𝒍 .

[ref] Pierre-Luc, et al.2018.Quantum generative adversarial networks . PHYSICAL REVIEW A 98,012324
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QGAN’2018: Applied VQC

[ref] Pierre-Luc, et al.2018.Quantum generative adversarial networks . PHYSICAL REVIEW A 98,012324
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An Application of QGAN’2019

• Quantum State Preparation

|0⟩

|0⟩

……

|0⟩

input

？

[ref] Christa Zoufal , et al. , Quantum Generative Adversarial Networks for learning and loading random distributions. 

npj| Quantum Information
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Another Application of QGAN’2021

• Molecule Drug Discovery

(a) Only generated molecules that have high affinity towards the receptor binding sites are considered as valid;

(b) (b) quantum stage (which is a parameterized quantum circuit with last-layer N measuring the expectation values) and classical stage (neural network with last-layer 

out-feature dimension of 512 ) separated by blue dotted line;

(c) application of atom layer and bond layer for generating synthetic molecular graphs (one example synthetic molecule is given);

(d) a batch of real molecules from training dataset (QM9 in this case) and a batch of synthetic molecules generated from (c) are fed into classical discriminator for 

real/synthetic prediction and FD score calculation, and drug properties for synthetic molecules are evaluated using RDKit package. The prediction losses from 

discriminator are back-forwarded to two neural networks as well as quantum circuit for updating all parameters simultaneously in each training epoch.

• Parameterized quantum circuit to obtain feature vector of N dimensions. 

• The circuit is composed of initialization layers, repeatable parameterized 

layers and measurement layer .

• Two CNOT gates for each ZZ interaction for creating entanglement are 

not shown here.

[ref] Junde Li, et al. , Quantum Generative Models for Small Molecule Drug Discovery. arXiv@2021 
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QRNN --- Based on Quantum Neural (1-to-1)

36 |  George Mason University

Quantum RNN

Classical RNN

[ref] Johannes Bausch, et al. , Recurrent Quantum Neural Networks Johannes . arXiv @ Jun. 2020
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QRNN

37 |  George Mason University

Quantum Neuron (1-to-1) QRNN Cell

[ref] Johannes Bausch, et al. , Recurrent Quantum Neural Networks Johannes . arXiv @ Jun. 2020

QRNN
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LSTM v.s. QLSTM -- Based on VQC

[ref] Samuel Yen-Chi, et al. , Quantum Long Short-Term Memory. 

𝑓𝑡 = 𝜎 𝑊𝑓 ⋅ 𝑣𝑡 + 𝑏𝑓
𝑖𝑡 = 𝜎 𝑊𝑖 ⋅ 𝑣𝑡 + 𝑏𝑖

ሚ𝐶𝑡 = 𝑡𝑎𝑛 ℎ 𝑊𝐶 ⋅ 𝑣𝑡 + 𝑏𝐶
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡
𝑜𝑡 = 𝜎 𝑊𝑜 ⋅ 𝑣𝑡 + 𝑏𝑜
ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ 𝑐𝑡

𝑓𝑡 = 𝜎 𝑉𝑄𝐶1 𝑣𝑡

𝑖𝑡 = 𝜎 𝑉𝑄𝐶2 𝑣𝑡
ሚ𝐶𝑡 = 𝑡𝑎𝑛 ℎ 𝑉𝑄𝐶3 𝑣𝑡

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡
𝑜𝑡 = 𝜎 𝑉𝑄𝐶4 𝑣𝑡

ℎ𝑡 = 𝑉𝑄𝐶5 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ 𝑐𝑡
𝑦𝑡 = 𝑉𝑄𝐶6 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ 𝑐𝑡
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VQC Used in Q-LSTM

VQCs are a kind of quantum circuits that have tunable parameters 

subject to iterative optimizations

Variational Layer: Generate multi 

quantum entanglement.
Quantum Measurement Layer：
Consider the expectation values 

of every qubit by measuring in 

the computational basis

Data Encoding Layer: classical input 

vector encoded into quantum state.

[ref] Samuel Yen-Chi, et al. , Quantum Long Short-Term Memory. 



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Agenda – Session 1: Introduction

41 |  George Mason University

▪ Roadmap of Quantum Machine Learning

▪ Call for paper at “Electronics”

▪ Conclusion

▪ Q&A



An open access journal by MDPI

Special Issue: 

Quantum Machine Learning Theory, Methods and Applications

Guest Editor: 

Dr. Weiwen Jiang
Department of Electrical and Computer Engineering, George Mason 
University, USA

Dr. Ying Mao

Department of Computer and Information Science, Fordham 
University, New York, USA

Dr. Samuel Yen-Chi Chen
Computational Science Initiative, Brookhaven National Laboratory, 
New York, USA

Deadline for manuscript submissions:
20 April 2022

Topics are welcome to contribute:

• Quantum machine learning

• Quantum neural network

• Quantum supervised learning

• Quantum unsupervised learning

• Quantum reinforcement learning

• Quantum learning theory

• Variational quantum circuits

• Noisy intermediate-scale quantum devices 
(NISQ)

https://www.mdpi.com/journal/electronics/spe
cial_issues/quantum_machine_learning



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Agenda – Session 1: Introduction

43 |  George Mason University

▪ Roadmap of Quantum Machine Learning

• Data Encoding

• HHL Algorithm

• Variational Quantum Circuit

• Quantum-based Neural Network Accelerator

• Applications

▪ Call for paper at “Electronics”

▪ Conclusion

▪ Q&A



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Takeaway

44 |  George Mason University

▪ Quantum Computing

▪ # of qubits grows rapidly

▪ Q-Circuit design is similar to classical ones, using quantum gates

▪ Machine Learning meets Quantum Computing

▪ Potential to solve computation-bound / memory-wall in classical

▪ What is quantum neural network? VQC v.s. Q-Based Accelerator

▪ What is the fair metric for comparison? 

▪ Time-space complexity

▪ What we want to achieve? 

▪ Quantum advantage for real-world applications in near-term Q!



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Q&A

45 |  George Mason University

https://jqub.ece.gmu.edu (JQub Website)

https://jqub.ece.gmu.edu/categories/QF (QuantumFlow Website for news and slides)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://www.nature.com/articles/s41467-020-20729-5 (QuantumFlow Paper)

https://arxiv.org/pdf/2012.10360.pdf (Paper on How to Correct Map NN to Q)

https://arxiv.org/pdf/2109.03806.pdf (QF-Mixer)

https://arxiv.org/pdf/2109.03430.pdf (QF-RobustNN)

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI)

https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

https://jqub.ece.gmu.edu/
https://jqub.ece.gmu.edu/categories/QF
https://jqub.ece.gmu.edu/categories/QF/qfnn/
https://www.nature.com/articles/s41467-020-20729-5
https://arxiv.org/pdf/2012.10360.pdf
https://arxiv.org/pdf/2109.03806.pdf
https://arxiv.org/pdf/2109.03430.pdf
https://github.com/JQub/QuantumFlow_Tutorial
https://github.com/JQub/qfnn
https://pypi.org/project/qfnn/
https://libraries.io/pypi/qfnn/
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