

Tutorial on QuantumFlow: A Co-Design Framework of Neural Network and Quantum Circuit towards Quantum Advantage

Session 4: Future Works: QF-Mixer, QF-RobustNN, and Others

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

Agenda – Session 4: Extensions

Zhepeng Wang

Electrical and Computer Engineering

George Mason University

zwang48@gmu.edu

QF-Mixer: Exploring Quantum Neural Architecture

- Motivation: Existing Quantum Neuron Designs Can Be Complementary
- Design Principle: Mixing Designs is Harder Than Your Thoughts!
- Results
- QF-RobustNN: Learning Noise in Quantum Neural Networks
- Open Questions and Future Work

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

Speaker Information

Dr Jiang's Quantum-Classical Computer-Aided Design Lab (JQub)

Zhepeng Wang

- Ph.D. student, ECE, George Mason University
- Graduate research assistant of JQub
- M.S., ECE, University of Pittsburgh
- B.S., CS, Harbin Institute of Technology
- Advisor: Dr. Weiwen Jiang
 - Assistant Professor, ECE, George Mason University
 - Founder and director of JQub

Research Interest

- Quantum machine learning
- On-Device AI

Background and Motivation

Dr. Weiwen Jiang, ECE, GMU

4 | George Mason University

Variational quantum circuit (VQC)-based neuron

V-Neuron (V-NEU)

- A widely used quantum neuron
- Reuse the input qubits as

output qubits

• Make use of the entanglement from quantum computing to increase the model complexity

Advantage

• Real-valued weights

Disadvantage
Linear classifier
Cannot be extended to
multiple nonlinear layers
with low cost

Customized neurons of QuantumFlow

Output encoding: *Probability encoding*

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications **Tutorial on Quantum Flow** 6

Customized neurons of QuantumFlow

U-Neuron (U-NEU)

- Input encoding: Amplitude encoding
- Output encoding: *Probability encoding*

	Disadvantage						
•	Binary weights						

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Customized neurons of QuantumFlow

N-Neuron (N-NEU)

- Input encoding: *Probability encoding*
- Output encoding: *Probability encoding*

- Optional
- Batch normalization

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Dr. Weiwen Jiang, ECE, GMU

Q-Neuron

Disadvantage

- Data encoding: one-to-one mapping (almost impossible to achieve quantum advantage)
- Repeat-until-success to build non-linear function (Inefficient)

Q-Non-Linear Neuron

Disadvantage

• Quantum advantage cannot be achieved

Apply boolean function to realize any non-linear function

Q-Artificial Neuron

Implementing binary perceptron in quantum computer

• Both inputs and weights are binary

Z. wang, et al. Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

Motivation

- Mixing different neurons could improve the performance of NN running on classical computers
- V-Neuron and neurons of QuantumFlow are complementary

Motivation

- Challenges for mixing neurons
 - Quantum-classical communication overhead
 - Inconsistent design of same type of neurons
 - Inefficient training on classical computers

QF-Mixer

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

13 | George Mason University

- Execution on quantum devices only
 - W/t Measurement
 - No expensive quantum-classical communication overhead

- Consistency on the encoding method of neurons regardless of the placement
 - Consistent neuron computation
 - Consistent circuit design

P-NEU Neural Computation

P-NEU Circuit implementation

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Dr. Weiwen Jiang, ECE, GMU

- Training efficiently on classical computers
 - Training the whole QNN directly on classical computing is costly
- Decoupling the neurons of different layers is important

- Execution on quantum devices only
 - W/t Measurement
 - No expensive quantum-classical communication overhead
- Consistency on the encoding method of neurons regardless of the placement
 - Consistent neuron computation
 - Consistent circuit design

- Training efficiently on classical computers
 - Training the whole QNN directly on classical computing is costly
 - Decoupling the neurons of different layers is important

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are not entangled

- Principle 1 (Path 1-4)
 - The output qubits from QN-1 are decoupled with the output qubits of its previous layers.
 - Conclusion: Feasible

Output qubits of QN-1 are entangled

- Principle 2 (Path 5)
 - W/o probability encoding involved, there is no requirement on the decoupling
 - Conclusion: Feasible

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are entangled

- Principle 3 (Path 6)
 - When QN-2 is a neuron in the first layer of a QNN and uses probability encoding, the input qubits are required to be independent.
 - Based on the goal of consistency, when QN-1 is the neuron in other layers, independence requirement should also hold.
 - Conclusion: Infeasible

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are entangled

- Principle 4 (Path 7)
 - Conclusion: Conditional
 - Condition: The inputs qubits of QN-1 are reused by the output qubits, such as V-Layer.
- Principle 5 (Path 8)
 - Conclusion: Conditional
 - Condition:
 - Output qubits of QN-1 are used as control end without phase kickback
 - The operations on the output qubits of QN-1 only rotates them around X-axis

Dr. Weiwen Jiang, ECE, GMU

QF-MixNN

- Pure quantum architecture
 - The neural computation is conducted purely on quantum devices
 - Data pre-processing and post-processing are on classical devices
- V-Layer should be the first
 - Applying amplitude encoding to the input data
 - The extreme case is V-Layers only
 - Larger *R1* provides more real-valued weights

- Multi-layer QNN can be formed
 - U-Layer provides the non-linearity to the V-Layers, which will be added if *R2* = 1
 - Larger R3 corresponds to more non-linear layers

The Design of QF-MixNN Follows the Principles

Neuron Type	Input Encoding	Output Encoding	
	Method	Method	
U-Neuron	Amplitude	Probability	
V-Neuron	Amplitude	Amplitude/Probability	
P-Neuron	Probability	Probability	
N-Neuron	Probability	Probability	

- V-NEU to V-NEU: Path 5
- V-NEU to U-NEU: Path 5
- U-NEU to N-NEU: Path 8
- N-NEU to P-NEU: Path 8
- V-NEU to P-NEU: Path 8

Feasible!

Experimental Results

Dr. Weiwen Jiang, ECE, GMU

23 | George Mason University

QF-MixNN Achieves the Best Accuracy on MNIST

TABLE I EVALUATION OF QNNS WITH DIFFERENT NEURAL ARCHITECTURE							
Architecture MNIST-2 [†] MNIST-3 [†] MNIST-4 [‡] MNIST-5 [‡]					MNIST [§]		
VQC (V×R1)		97.91%	90.09%	93.45%	91.35%	52.77%	
QuantumFlow		95.63%	91.42%	94.26%	89.53%	69.92%	
	V+U	97.36%	92.77%	94.41%	93.85%	88.46%	
QF-MixNN	V+U+P	87.45%	82.9%	92.44%	91.56%	90.62%	
	V+P	91.72%	76.93%	88.43%	85.02%	49.57%	
Input resolutions: † 4 × 4; ‡ 8 × 8; $^{\$}$ 16 × 16;							

- Non-linearity is important. A linear decision boundary is not sufficient for complicated tasks.
- Real-valued weight is helpful. It increases the representation capability of QNN significantly.

OF-MixNN takes the advantage of both VQC-based QNN and QF-Net from Quantumflow.

Increasing the Number of V-Layers Could Improve the Accuracy

API Demostration

Dr. Weiwen Jiang, ECE, GMU

26 | George Mason University

Sub module of

qfnn.qf_fb

• Initialization: (1) image_size: \mathcal{M} for an image with size of $(\mathcal{M} \times \mathcal{M})$;

(2) layer: An array describes the architecture of QF-MixNN;
 current support neuron: V-NEU ('v5' and 'v10'), U-NEU ('u'),

P-NEU ('p'), N-NEU ('n');

(3) training: True if you want to train the QNN;

(4) binary: *True* if the input image is binary;

(5) given_ang: available only when N-NEU is used;

(6) train_ang: available only when N-NEU is used

• Forward: (1) Given batch of encoded input images with size of $(\mathcal{M} \times \mathcal{M})$;

(2) output the batch of prediction results;

Example: V + U

layers = [['v', 16], ['u', 2]] # Specify the architecture of QF-MixNN
img_size = 4 # Input image size is 4x4

Initialize QF-MixNN
from qfnn.qf_fb.c_qf_mixer import Net
model = Net(img_size, layers, False, False) # Training and binary are False
model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

Encode the input image to_quantum_data = ToQuantumData(img_size) output_data = to_quantum_data(data)

Make prediction using QF-MixNN
output = model(output_data, training=False) # It will call forward function
#show your circuit
print("inference result:", output)

Example: U + V

layers = [['u', 4], ['p2a', 16], ['v', 2]] # Specify the architecture of QF-MixNN
img_size = 4 # Input image size is 4x4

Initialize QF-MixNN
from qfnn.qf_fb.c_qf_mixer import Net
model = Net(img_size, layers, False, False) # Training and binary are False
model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

Encode the input image to_quantum_data = ToQuantumData(img_size) output_data = to_quantum_data(data)

Make prediction using QF-MixNN
output = model(output_data, training=False) # It will call forward function
#show your circuit
print("inference result:", output)

More Examples

The Key point is to build the parameter 'layers' !

```
layers = [['v', 16],['u', 2]] # V + U
layers = [['v', 4],['p', 2]] # V + P
layers = [['v', 16],['u', 4],['p', 2]] # V + U + P
layers = [['v', 16],['v', 16],['u', 4],['p', 2]] # V + V + U + P
layers = [['v', 16],['v', 16],['u', 4],['p', 4],['p', 2]] # V + V + U + P + P
```

img_size = 4 # Input image size is 4x4

Initialize QF-MixNN
from qfnn.qf_fb.c_qf_mixer import Net
model = Net(img_size, layers, False, False) # Training and binary are False
model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

Encode the input image to_quantum_data = ToQuantumData(img_size) output_data = to_quantum_data(data)

The Other part remains unchanged.

```
# Make prediction using QF-MixNN
output = model(output data, training=False) # It will call forward function
#show your circuit
print("inference result:", output)
```

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

Agenda – Session 4: Extensions

Zhiding Liang

Computer Science and Engineering University of Notre Dame zliang5@nd.edu

QF-Mixer: Exploring Quantum Neural Architecture

QF-RobustNN: Learning Noise in Quantum Neural Networks

- Introduction to Noise in Quantum Computing
- Motivation: Error Can Corrupt Quantum NN and Compiling Leads to Lengthy Learning
- Application-Specific Compiler is Needed
- Results

Open Questions and Future Work

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

Speaker Biography

Email: zliang5@nd.edu

Zhiding Liang

Graduate Assistant in Sustainable Computing Laboratory (SCL)

- Education:
 - PhD student, Computer Science and Engineering, University of Notre Dame (2021-)
 - BS, Electrical Engineering, University of Wisconsin, Madison (2020)
- Supervisor:
 - Prof. Yiyu Shi (University of Notre Dame)
 - Prof. Weiwen Jiang (George Mason University)
- Research Interests:
 - Quantum Machine Learning
 - Quantum Compiler

Quantum Errors

Quantum devices have high error rate

Error rate on a bit in CMOS Device error rate is about 10^{-15} But error rate on a quantum bit reaches 10^{-4} to 10^{-2}

Why Error Need to Be Learned in Quantum Neural Network?

Noise Model	Affected Gates	Error Rate	Accuracy	Simulation Time (per image)
No Error	0	-	98.04%	5.00s
Bit Flip Error	X, CX, CCX	0.1	53.30%	568.50s
Bit Flip Error	X, CX, CCX	0.01	88.24%	540.00s
Phase Flip Error	Z, CZ	0.1	64.29%	545.00s
Phase Flip Error	Z, CZ	0.01	91.67%	511.14s
Bit+Phase	X,CX,CCX,Z,CZ	0.1	45.10%	628.00s
Bit+Phase	X,CX,CCX,Z,CZ	0.01	77.78%	532.04s

• Noise can significantly affect the performance of Quantum Neural Network.

• Error can be learned into Classical Neural Network.

[1] Zheyu Yan, Da-Cheng Juan, X. Sharon Hu and Yiyu Shi, "Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search," *in Proc. of the Asia and South Pacific Design Automation Conference* (ASP-DAC), 2021

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

Challenges in learning error rate into quantum neural network

Dr. Weiwen Jiang, ECE, GMU

36 | George Mason University

Challenges to Learn Error in Quantum Neural Network?

Challenges:

1. Error unpredictable on the quantum circuit. We need to fix the logical-physical qubits mapping.

Challenges to Learn Error in Quantum Neural Network?

Challenges:

- 1. Error unpredictable on the quantum circuit. We need to fix the logical-physical qubits mapping.
- 2. Existing compiler may not for training, because they are always time-consuming. We need to build a compiler with faster compiling speed.

Quantum-error-aware Training Framework

[2] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "A codesign framework of neural networks and quantum circuits towards quantum advantage". In: *Nature communications* 12.1 (2021), pp. 1–13.
 [3] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "When Machine Learning Meets Quantum Computers: A Case Study". In: 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2021, pp. 593–598.

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

39 | George Mason University

Train QNN to learn error info

The quantum-error-aware training framework can be better to demonstrate as follow equation:

$$c_{i} = circ(W_{i})$$

$$m_{i} = Map(c_{i}, PhyQ)$$

$$e_{i} = Error(m_{i})$$

$$a_{i} = Inference(m_{i}, e_{i})$$

- *c_i* is the logical quantum circuit generated by one identified weight *W_i* in the i-th iteration.
- m_i is represented the c_i mapping to physical qubits.
- e_i is the error model based on m_i .
- a_i is accuracy of the QNN with W_i , which is executing by the physical quantum circuit m_i with error model e_i .

Application-Specific Mapping

Tutorial on QuantumFlow

QF-RobustNN Result

Dr. Weiwen Jiang, ECE, GMU

42 | George Mason University

QF-RobustNN Results on IBM Quantum Simulator

Error Rate	Baseline	QF-RobustNN				
LITOI Rate	Acc.	Acc.	Weight			
0 (Perfect)	94%	-	[-1, -1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]			
0.0001	84%	84%	[-1, -1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]			
0.0005	75%	76%	[1,1,1,-1,-1,-1,-1], [-1,-1,-1,1,1,-1,-1,-1]			
0.001	74%	76%	[1,1,-1,1,1,-1,-1,1], [-1,1,1,1,-1,1,1,1]			
0.01	75%	80%	[-1, -1, 1, -1, 1, -1, 1], [1, 1, 1, -1, -1, 1, -1, 1]			
0.05	49%	75%	[1,1,-1,-1,1,-1,1], [-1,1,-1,-1,-1,-1,-1,-1]			
0.1	47%	75%	[1,1,-1,-1,1,-1,1,-1], [1,1,-1,-1,1,-1,1,-1]			

- Baseline model has the initial weight [-1,-1,1,1,1,1,1], [1,1,1,1,1,1,1], which has the best performance on perfect environment.
- Here is an observation that the QF-RobustNN push the improvement on accuracy as the error rate become larger.

Comparison of Compilers Elapsed Time Results on IBM Q Montreal

Compiler Name	Circuit Complexity Level				
Complier Name	Simple	Middle	Complex		
QUEKO ^[4]	484.755s	5332.903s	Over 10 hours		
HA [5]	4.765s	4.696s	4.201s		
OURS	0.008s	0.015s	0.020s		
Imp. (vs QUEKO)	$60594.38 \times$	355526.87×	>1800000×		
Imp. (vs HA)	595.63×	313.07×	$210.05 \times$		

- Apply two existing compilers to be the baseline for efficiency comparison.
 - (1) Quantum Mapping Examples with Known Optimal (QUEKO) [5]
 - (2) Heuristic-based Hardware-Aware mapping algorithm (HA) [6]
- Results demonstrate our application-specific compiler can be efficiently integrated into the training framework.

[4] Bochen Tan and Jason Cong. "Optimal layout synthesis for quantum computing". In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE. 2020, pp. 1–9. [5] Siyuan Niu et al. "A Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era". In: IEEE Transactions on Quantum Engineering 1 (2020), pp. 1–14.

Dr. Weiwen Jiang, ECE, GMU

Comparison of Compilers Results on IBM Q Montreal

Compiler Name	Model	Accuracy	Extra SWAP gate	Elapsed Time
OURS	baseline	74%	15	0.020s
HA	QF-RobustNN	75%	43	3.955s
OURS	QF-RobustNN	80%	12	0.014s

- The comparison of compilers results demonstrate the efficiency advantage that QF-RobustNN has.
 - Higher accuracy
 - Less Extra gate cost
 - Shorter elapsed time.

Thank you!

Dr. Weiwen Jiang, ECE, GMU

46 | George Mason University