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▪ QF-Mixer: Exploring Quantum Neural Architecture

• Motivation: Existing Quantum Neuron Designs Can Be Complementary

• Design Principle: Mixing Designs is Harder Than Your Thoughts!

• Results
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▪ Open Questions and Future Work

Zhepeng Wang

Electrical and Computer Engineering

George Mason University

zwang48@gmu.edu



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Speaker Information

3 |  George Mason University

▪ Zhepeng Wang

• Ph.D. student, ECE, George Mason University

• Graduate research assistant of JQub

• M.S., ECE, University of Pittsburgh

• B.S., CS, Harbin Institute of Technology

▪ Advisor: Dr. Weiwen Jiang

• Assistant Professor, ECE, George Mason University

• Founder and director of JQub

▪ Research Interest

• Quantum machine learning

• On-Device AI
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Background and Motivation
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Existing Quantum Neuron Designs
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▪ Variational quantum circuit (VQC)-based neuron 

V-Neuron (V-NEU)

• A widely used quantum 

neuron

• Reuse the input qubits as

output qubits

Advantage

• Linear classifier

• Cannot be extended to 

multiple nonlinear layers 

with low cost

Disadvantage

• Real-valued weights

• Make use of the entanglement from quantum 

computing to increase the model complexity
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• Input encoding: Probability encoding 

(Angle encoding)

• Output encoding: Probability encoding

P-Neuron (P-NEU)

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

• Binary weights 

Advantage

Disadvantage

• Easy to be stacked to form 

multiple nonlinear layers

Existing Quantum Neuron Designs

▪ Customized neurons of QuantumFlow

https://arxiv.org/pdf/2006.14815.pdf
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• Input encoding: Amplitude encoding

• Output encoding: Probability encoding

U-Neuron (U-NEU)

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

Advantage

• Binary weights 

Disadvantage

• It could be connected to P-

Neuron seamlessly

• It achieves quantum 

advantage

Existing Quantum Neuron Designs

▪ Customized neurons of QuantumFlow

https://arxiv.org/pdf/2006.14815.pdf
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• Input encoding: Probability encoding

• Output encoding: Probability encoding

• Optional 

• Batch normalization

N-Neuron (N-NEU)

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

Existing Quantum Neuron Designs

▪ Customized neurons of QuantumFlow

https://arxiv.org/pdf/2006.14815.pdf
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Disadvantage

• Data encoding: one-to-one 
mapping (almost impossible to 
achieve quantum advantage)

• Repeat-until-success to build 
non-linear function 
(Inefficient)

▪ Q-Non-Linear Neuron

Disadvantage

• Quantum advantage cannot 
be achieved

Apply boolean function to realize any non-linear function 

Existing Quantum Neuron Designs

▪ Q-Neuron
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Disadvantage

• Both inputs and weights are 
binary

Implementing binary perceptron in quantum 

computer

Existing Quantum Neuron Designs

▪ Q-Artificial Neuron

Z. wang, et al. Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

https://arxiv.org/pdf/2109.03806.pdf
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▪ V-Neuron and neurons of QuantumFlow are complementary

V-NEU Neurons from QuantumFlow

• Linear classifier

• Cannot be extended to 

multiple nonlinear layers 

with low cost

Disadvantage

Advantage

• Real-valued weights • Binary weights

Disadvantage

Advantage

• Easy to be extended to 

multiple nonlinear layers w/t 

measurement

Complementary

▪ Mixing different neurons could improve the performance of NN running on classical 
computers

Motivation



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU 12 |  George Mason University

▪ Challenges for mixing neurons

• Quantum-classical communication overhead

• Inconsistent design of same type of neurons

• Inefficient training on classical computers

Motivation
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QF-Mixer 
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Design Goals of Mixing Neurons
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▪ Execution on quantum devices only

• W/t Measurement 

• No expensive quantum-classical communication 

overhead

|0⟩

|0⟩

|0⟩

|0⟩

⋯

|0⟩

UP 𝑈𝑁(𝜃1)
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Classical ComputingQuantum
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▪ Consistency on the encoding method of neurons 

regardless of the placement

• Consistent neuron computation  

• Consistent circuit design

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

P-NEU Neural Computation 

Design Goals of Mixing Neurons

P-NEU Circuit implementation

https://arxiv.org/pdf/2006.14815.pdf


Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU 16 |  George Mason University

▪ Training efficiently on classical computers

• Training the whole QNN directly on classical 

computing is costly

• Decoupling the neurons of different layers is 

important

Quirk: https://algassert.com/quirk

Design Goals of Mixing Neurons

https://algassert.com/quirk
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▪ Execution on quantum devices only

• W/t Measurement 

• No expensive quantum-classical communication 

overhead

▪ Consistency on the encoding method of neurons 

regardless of the placement

• Consistent neuron computation  

• Consistent circuit design

▪ Training efficiently on classical computers

• Training the whole QNN directly on classical 

computing is costly

• Decoupling the neurons of different layers 

is important

Design Principles

Design Goals of Mixing Neurons
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▪ Principle 1  (Path 1-4)

• The output qubits from QN-1 are decoupled 

with the output qubits of its previous layers.

• Conclusion: Feasible 

• P: Probability encoding

• A: Amplitude encoding ▪ Principle 2  (Path 5)

• W/o probability encoding involved, there 

is no requirement on the decoupling

• Conclusion: Feasible

Output qubits of QN-1 are not entangled 

Output qubits of QN-1 are entangled 

Design Principles
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▪ Principle 3  (Path 6)

• When QN-2 is a neuron in the first layer of a 

QNN and uses probability encoding, the 

input qubits are required to be independent.

• Based on the goal of consistency, when QN-1 

is the neuron in other layers, independence 

requirement should also hold. 

• Conclusion: Infeasible 

Output qubits of QN-1 are entangled 

19 |  George Mason University

• P: Probability encoding

• A: Amplitude encoding

Design Principles
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▪ Principle 4  (Path 7)

• Conclusion: Conditional

• Condition: The inputs qubits of QN-1 are 

reused by the output qubits, such as V-

Layer.

Output qubits of QN-1 are entangled 
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• P: Probability encoding

• A: Amplitude encoding

Design Principles

▪ Principle 5  (Path 8)

• Conclusion: Conditional

• Condition: 

• Output qubits of QN-1 are used as control 

end without phase kickback

• The operations on the output qubits of 

QN-1 only rotates them around X-axis 
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QF-MixNN
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▪ Pure quantum architecture 

• The neural computation is conducted purely on 

quantum devices

• Data pre-processing and post-processing are on 

classical devices 

▪ V-Layer should be the first

• Applying amplitude encoding to the input data

• The extreme case is V-Layers only

• Larger R1 provides more real-valued weights 

▪ Multi-layer QNN can be formed

• U-Layer provides the non-linearity to the V-

Layers, which will be added if R2 = 1

• Larger R3 corresponds to more non-linear 

layers 
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The Design of QF-MixNN Follows the Principles  
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• V-NEU to V-NEU: Path 5 

• V-NEU to U-NEU: Path 5

• U-NEU to N-NEU: Path 8

• N-NEU to P-NEU: Path 8

• V-NEU to P-NEU: Path 8

Feasible!
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Experimental Results
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QF-MixNN Achieves the Best Accuracy on MNIST 
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OF-MixNN takes the advantage of both VQC-based QNN and QF-Net 

from Quantumflow.

▪ Non-linearity is important. A  linear  decision  

boundary is not sufficient for complicated tasks.

▪ Real-valued weight is helpful. It increases the 

representation capability of QNN significantly.
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Increasing the Number of V-Layers Could Improve the Accuracy

Number of V-Layer (R1) Number of V-Layer (R1) 

(a) V X R1 + U (b) V X R1 + U + P 
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API Demostration
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QF-MixNN: c_qf_mixer.Net
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qfnn.qf_fbSub module of 

• Initialization: (1) image_size: ℳ for an image with size of (ℳ X ℳ); 

(2) layer: An array describes the architecture of QF-MixNN;

current support neuron: V-NEU (‘v5’ and ‘v10’), U-NEU (‘u’), 

P-NEU (‘p’), N-NEU (‘n’);

(3) training: True if you want to train the QNN; 

(4) binary: True if the input image is binary;

(5) given_ang: available only when N-NEU is used;

(6) train_ang: available only when N-NEU is used

• Forward: (1) Given batch of encoded input images with size of (ℳ X ℳ); 

(2) output the batch of prediction results; 
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layers = [['v', 16], ['u', 2]] # Specify the architecture of QF-MixNN

img_size = 4 # Input image size is 4x4

# Initialize QF-MixNN

from qfnn.qf_fb.c_qf_mixer import Net

model = Net(img_size, layers, False, False) # Training and binary are False

model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

# Encode the input image 

to_quantum_data = ToQuantumData(img_size)

output_data = to_quantum_data(data)

# Make prediction using QF-MixNN

output = model(output_data, training=False) # It will call forward function

#show your circuit

print("inference result:", output)

QF-MixNN: c_qf_mixer.Net

28 |  George Mason University

Example: V + U
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QF-MixNN: c_qf_mixer.Net
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Example: U + V

layers = [['u', 4], ['p2a', 16], ['v', 2]] # Specify the architecture of QF-MixNN

img_size = 4 # Input image size is 4x4

# Initialize QF-MixNN

from qfnn.qf_fb.c_qf_mixer import Net

model = Net(img_size, layers, False, False) # Training and binary are False

model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

# Encode the input image 

to_quantum_data = ToQuantumData(img_size)

output_data = to_quantum_data(data)

# Make prediction using QF-MixNN

output = model(output_data, training=False) # It will call forward function

#show your circuit

print("inference result:", output)
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qfnn API Example (5)
QF-Mixer

U + V Example

V + U ExampleV + U Example

U + V Example

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_3/EX_5_VQC.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_3/EX_5_VQC.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_4/EX_7_QF_MixNN_U_V.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_4/EX_6_QF_MixNN_V_U.ipynb
https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_4/EX_6_QF_MixNN_V_U.ipynb
https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_4/EX_7_QF_MixNN_U_V.ipynb
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img_size = 4 # Input image size is 4x4

# Initialize QF-MixNN

from qfnn.qf_fb.c_qf_mixer import Net

model = Net(img_size, layers, False, False) # Training and binary are False

model.load_state_dict(checkpoint["state_dict"]) # Load the pretrained parameters

# Encode the input image 

to_quantum_data = ToQuantumData(img_size)

output_data = to_quantum_data(data)

# Make prediction using QF-MixNN

output = model(output_data, training=False) # It will call forward function

#show your circuit

print("inference result:", output)

QF-MixNN: c_qf_mixer.Net
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More Examples The Key point is to build the parameter ‘layers’ !

layers = [['v', 16],['u', 2]] # V + U

The Other part remains unchanged. 

layers = [['v', 16],['u', 4],['p', 2]] # V + U + P

layers = [['v’, 4],['p', 2]] # V + P 

layers = [['v', 16],['v', 16],['u', 4],['p', 2]] # V + V + U + P

layers = [['v', 16],['v', 16],['u', 4],['p’, 4],['p', 2]] # V + V + U + P + P
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Agenda – Session 4: Extensions
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▪ QF-Mixer: Exploring Quantum Neural Architecture

▪ QF-RobustNN: Learning Noise in Quantum Neural Networks

• Introduction to Noise in Quantum Computing

• Motivation: Error Can Corrupt Quantum NN and Compiling Leads to Lengthy Learning

• Application-Specific Compiler is Needed

• Results

▪ Open Questions and Future Work

Zhiding Liang

Computer Science and Engineering

University of Notre Dame

zliang5@nd.edu
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Speaker Biography
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Zhiding Liang
Graduate Assistant in Sustainable Computing Laboratory (SCL)

• Education:

• PhD student, Computer Science and Engineering, 

University of Notre Dame (2021-)

• BS, Electrical Engineering, University of Wisconsin, 

Madison (2020)

• Supervisor: 

• Prof. Yiyu Shi (University of Notre Dame) 

• Prof. Weiwen Jiang (George Mason University)

• Research Interests: 

• Quantum Machine Learning

• Quantum Compiler

Email: zliang5@nd.edu
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Quantum Errors 
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X

X X

Perfect Circuit

E

1-E

Bit Flip

X

X Ze

1-e

Phase Flip

X

Determined by 

mapping 

Quantum devices have high error rate

Error rate on a bit in  CMOS Device error rate is about 10-15

But error rate on a quantum bit reaches 10-4 to 10-2



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Why Error Need to Be Learned in Quantum Neural Network?
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Noise Model Affected Gates Error Rate Accuracy
Simulation Time

（per image）

No Error 0 - 98.04% 5.00s

Bit Flip Error X, CX, CCX 0.1 53.30% 568.50s

Bit Flip Error X, CX, CCX 0.01 88.24% 540.00s

Phase Flip Error Z, CZ 0.1 64.29% 545.00s

Phase Flip Error Z, CZ 0.01 91.67% 511.14s

Bit+Phase X,CX,CCX,Z,CZ 0.1 45.10% 628.00s

Bit+Phase X,CX,CCX,Z,CZ 0.01 77.78% 532.04s

• Noise can significantly affect the performance of Quantum Neural Network.

Controller Trainer Evaluator

Neural 

architecture
Traine

d 

model

Rewar

d

[1]

[1] Zheyu Yan, Da-Cheng Juan, X. Sharon Hu and Yiyu Shi, “Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural 

Architecture Search,” in Proc. of the Asia and South Pacific Design Automation Conference (ASP-DAC), 2021 

• Error can be learned into Classical Neural 

Network.
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Challenges in learning error rate into 
quantum neural network
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Challenges to Learn Error in Quantum Neural Network?

37 |  George Mason University

Challenges:
1. Error unpredictable on the quantum circuit. We need to fix the logical-physical qubits 

mapping.



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Challenges to Learn Error in Quantum Neural Network?
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Training Neural Network

𝑇𝑖𝑚𝑒 = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝐶𝑜𝑚𝑝𝑖𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

Existing 

Quantum 

Compiler

Time Consuming!

Challenges:
1. Error unpredictable on the quantum circuit. We need to fix the logical-physical qubits 

mapping.

2. Existing compiler may not for training, because they are always time-consuming. We need 

to build a compiler with faster compiling speed.
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Quantum-error-aware Training Framework
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(a)

Quantum Neural 

Network

(b)

Logical 

Quantum Ciruits

(c)

Physical

Quantum Ciruits

(d)

Quantum Computer

Or Quantum Simulator Quantum Simulator

Trained 

Weights

Generate

Application-Specific 

Mapping

Logical-physical 

qubit mapping

Inference with 

error ware on

Model 

AccuracyOutput

T
rain

 Q
N

N
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 E

rro
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[2][3]

[2] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. “A codesign framework of neural networks and quantum circuits towards quantum advantage”. In: Nature communications 12.1 (2021), pp. 1–13.

[3] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. “When Machine Learning Meets Quantum Computers: A Case Study”. In: 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2021, pp. 593–598.



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Train QNN to learn error info
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𝑐𝑖 = 𝑐𝑖𝑟𝑐(𝑊𝑖)
𝑚𝑖 = 𝑀𝑎𝑝(𝑐𝑖, 𝑃ℎ𝑦𝑄)
𝑒𝑖 = 𝐸𝑟𝑟𝑜𝑟(𝑚_𝑖)

𝑎𝑖 = 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑚𝑖, 𝑒𝑖)

The quantum-error-aware training framework can be 

better to demonstrate as follow equation:

Model 

Accuracy
Searched 

Weight

Trained 

Weight

update

• 𝑐𝑖 is the logical quantum circuit generated by one identified 

weight 𝑊𝑖 in the i-th iteration.

• 𝑚𝑖 is represented the 𝑐𝑖 mapping to physical qubits.

• 𝑒𝑖 is the error model based on 𝑚𝑖.

• 𝑎𝑖 is accuracy of the QNN with 𝑊𝑖 ,which is executing by the 

physical quantum circuit 𝑚𝑖 with error model 𝑒𝑖 .
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Application-Specific Mapping 
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QF-RobustNN Result
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QF-RobustNN Results on IBM Quantum Simulator 
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◼ Baseline model has the initial weight [-1,-1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1] , which has 

the best performance on perfect environment.

◼ Here is an observation that the QF-RobustNN push the improvement on accuracy as 

the error rate become larger.



Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Comparison of Compilers Elapsed Time Results on IBM Q Montreal
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• Apply two existing compilers to be the baseline for efficiency comparison.

• (1) Quantum Mapping Examples with Known Optimal (QUEKO) [5]

• (2) Heuristic-based Hardware-Aware mapping algorithm (HA) [6]

• Results demonstrate our application-specific compiler can be efficiently integrated into 

the training framework. 

[4] Bochen Tan and Jason Cong. “Optimal layout synthesis for quantum computing”. In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE. 2020, pp. 1–9. 

[5] Siyuan Niu et al. “A Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era”. In: IEEE Transactions on Quantum Engineering 1 (2020), pp. 1– 14. 

[4]

[5]
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Comparison of Compilers Results on IBM Q Montreal
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• The comparison of compilers results demonstrate the efficiency 

advantage that QF-RobustNN has.

• Higher accuracy

• Less Extra gate cost

• Shorter elapsed time.
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Thank you!
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