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Resources

1 |  George Mason University

https://jqub.ece.gmu.edu (JQub Website)

https://jqub.ece.gmu.edu/categories/QF (QuantumFlow Website for news and slides)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://www.nature.com/articles/s41467-020-20729-5 (QuantumFlow Paper)

https://arxiv.org/pdf/2012.10360.pdf (Paper on How to Correct Map NN to Q)

https://arxiv.org/pdf/2109.03806.pdf (QF-Mixer)

https://arxiv.org/pdf/2109.03430.pdf (QF-RobustNN)

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI)

https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

https://jqub.ece.gmu.edu/
https://jqub.ece.gmu.edu/categories/QF
https://jqub.ece.gmu.edu/categories/QF/qfnn/
https://www.nature.com/articles/s41467-020-20729-5
https://arxiv.org/pdf/2012.10360.pdf
https://arxiv.org/pdf/2109.03806.pdf
https://arxiv.org/pdf/2109.03430.pdf
https://github.com/JQub/QuantumFlow_Tutorial
https://github.com/JQub/qfnn
https://pypi.org/project/qfnn/
https://libraries.io/pypi/qfnn/


Tutorial on QuantumFlow Dr. Weiwen Jiang, ECE, GMU

Tools to Be Used

2 |  George Mason University

Google CoLab Github – Tutorial Quirk QiskitPytorch

https://colab.research.google.com/
https://github.com/JQub/QuantumFlow_Tutorial
https://algassert.com/quirk
https://qiskit.org/
https://pytorch.org/
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• Education Background

• Chongqing University (2013-2019)

• University of Pittsburgh (2017-2019)

• University of Notre Dame (2019-2021)

• Research Interests

• HW/SW Co-Design

• Quantum Machine Learning

     

         

         

    

         

          

 
 
 
  
 
 
  
 
 

               

           

        

          

                

          

           

                 

              

               

                

           

                       

                         

 
  
 
  
  
 

        

      

               

                 

                        

                              

                

              

                 

 
 
  
 
 
      

     

                

    

                   

                

                   

                     

            

Best Paper Nominations:First HW/SW Co-Design Framework using NAS

Multi-FPAG for NN FNAS: HW/SW Co-Design via NAS 

NANDS: NAS & NoC FNAS Journal Version
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Entanglement of Qubits!
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Project Leader: Weiwen Jiang
Member: Zhirui Hu (QFNN API)

Member: Zhepeng Wang (QF-Mixer)

JQub @ Mason

https://jqub.ece.gmu.edu
Zhirui Hu @ Mason

QFNN API

Zhepeng Wang @ Mason

QF-Mixer

Zhiding Liang @ ND

QF-RobustNN

Collaborator: Jinjun Xiong

@ Univ. at Buffalo

(previous @ IBM)

jinjun@buffalo.edu

Collaborator: Yiyu Shi

Member: Zhiding Liang (QF-RubostNN)

@ Univ. of Notre Dame

https://www3.nd.edu/~scl/

Collaborator: Lei Yang

@ Univ. of New Mexico

ISA-LAB

https://leiyang0416.github.io/

https://jqub.ece.gmu.edu/
https://www3.nd.edu/~scl/
https://leiyang0416.github.io/
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Entanglement of QuantumFlow Collaborators
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Project Leader: Weiwen Jiang
Member: Zhirui Hu (QFNN API)

Member: Zhepeng Wang (QF-Mixer)

JQub @ Mason

https://jqub.ece.gmu.edu

Collaborator: Jinjun Xiong

@ Univ. at Buffalo

(previous @ IBM)

jinjun@buffalo.edu

Collaborator: Yiyu Shi

Member: Zhiding Liang (QF-RubostNN)

@ Univ. of Notre Dame

https://www3.nd.edu/~scl/

Collaborator: Lei Yang

@ Univ. of New Mexico

ISA-LAB

https://leiyang0416.github.io/

https://jqub.ece.gmu.edu/
https://www3.nd.edu/~scl/
https://leiyang0416.github.io/
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Our Quantum Works

7 |  George Mason University

Published Papers:

[1] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "A co-design framework of neural networks and quantum circuits

towards quantum advantage." Nature communications 12.1 (2021): 1-13.

[2] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "When Machine Learning Meets Quantum Computers: A Case

Study." Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.

[3] Zhepeng Wang, Zhiding Liang, Shangling Zhou, Caiwen Ding, Jinjun Xiong, Yiyu Shi, Weiwen Jiang,

"Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs." International Conference On

Computer-Aided Design (ICCAD), IEEE/ACM, 2021.

[4] Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Jinjun Xiong, Yiyu Shi, Weiwen Jiang, "Can Noise on

Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow." International Conference On

Computer-Aided Design (ICCAD), IEEE/ACM, 2021.

Invited Talks:

[1] Weiwen Jiang, "A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum

Advantage." IBM Quantum Summit 2020.

[2] Weiwen Jiang, "Tutorial on QuantumFlow: A Co-Design Framework of Neural Network and Quantum Circuit

towards Quantum Advantage.“ ESWEEK 2021

[3] Weiwen Jiang, "Tutorial on QuantumFlow: An End-to-End Quantum Neural Network Acceleration Framework.“

QuantumWEEK 2021
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Agenda

8 |  George Mason University

▪ Session 1: Introduction (12:45 - 13:30)

▪ Session 2: QuatnumFlow Co-Design Framework (13:40 - 14:40)

▪ Session 3: QFNN: Open-Source Library (14:40 - 14:50)

▪ Session 4: QF-Mixer and QF-RobustNN (15:00 - 16:20)

▪ Session 5: Roadmap (16:30 - 17:15)
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Agenda – Session 1: Introduction

9 |  George Mason University

▪ Introduction to Quantum Computing

• From Bit to Qubit

• From Logic Gates to Quantum Logic Gates

• Colab Hands-On (1): Basic Quantum Gates

▪ Introduction to Machine Learning

• Why Neural Networks

• Biological Neuron

• Artificial Neuron and Neural Network

• Learning

▪ Why Quantum Machine Learning
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Agenda – Session 2: QuantumFlow

10 |  George Mason University

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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Agenda – Session 3: QFNN API

11 |  George Mason University

▪ Introduction to QFNN

• Structure: qf_circ, qf_net, qf_fb, qf_map

▪ Building QuantumFlow using QFNN

• QF-pNet

• QF-hNet

• QF-FB

▪ Beyond QuantumFlow with QFNN

• FFNN

• VQC

• QF-Mixer
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Agenda – Session 4: Extensions

12 |  George Mason University

▪ QF-Mixer: Exploring Quantum Neural Architecture

• Motivation: Existing Quantum Neuron Designs Can Be Complementary

• Design Principle: Mixing Designs is Harder Than Your Thoughts!

• Results

▪ QF-RobustNN: Learning Noise in Quantum Neural Networks

• Introduction to Noise in Quantum Computing

• Motivation: Error Can Corrupt Quantum NN and Compiling Leads to Lengthy Learning

• Application-Specific Compiler is Needed

• Results

▪ Open Questions and Future Work
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Agenda – Session 5: Roadmap

13 |  George Mason University

▪ Roadmap of Quantum Machine Learning

▪ Call for paper at “Electronics”

▪ Conclusion

▪ Q&A
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Tools to Be Used

14 |  George Mason University

Google CoLab Github – Tutorial Quirk QiskitPytorch

https://colab.research.google.com/
https://github.com/JQub/QuantumFlow_Tutorial
https://algassert.com/quirk
https://qiskit.org/
https://pytorch.org/
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Agenda – Session 1: Introduction

15 |  George Mason University

▪ Introduction to Quantum Computing

• From Bit to Qubit

• From Logic Gates to Quantum Logic Gates

• Colab Hands-On (1): Basic Quantum Gates

▪ Introduction to Machine Learning

▪ Why Quantum Machine Learning
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Consistently Increasing Qubits in Quantum Computers

16 |  George Mason University
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The Power of Quantum Computers: Qubit

17 |  George Mason University

Classical Bit

Quantum Bit (Qubit)

𝑋 = 0 𝒐𝒓 1

|𝜓⟩ = 0 |1⟩and

𝜓 = 𝑎0 0 + 𝑎1|1⟩

s. t. 𝑎0
2 + 𝑎1

2 = 100%

01

Reading out Information from Qubit 

(Measurement)

𝜓

0

1𝑎1
2

𝑎0
2

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑁𝑜𝑛−𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

1

0

𝑎0
2 + 𝑎1

2 = 100%

40%+ 60% = 100%
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The Power of Quantum Computers: Qubit

18 |  George Mason University

Classical Bit

Quantum Bit (Qubit)

𝑋 = 0 𝒐𝒓 1

|𝜓⟩ = 0 |1⟩and

𝜓 = 𝑎0 0 + 𝑎1|1⟩

s. t. 𝑎0
2 + 𝑎1

2 = 100%

𝜓 = 𝑎0 0 + 𝑎1 1 =
𝑎0
𝑎1

Initially:

𝜓 = 0

, where 𝑎0 = 1 and 𝑎1 = 0

𝜓 = 0 =
1
0

Representation:
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The Power of Quantum Computers: Qubits

19 |  George Mason University

2 Classical Bits

00 or 01 or 10 or 11

n bits for 1 value

𝒙 ∈ [𝟎, 𝟐𝒏 − 𝟏]

2 Qubits

𝑐00 00 and 𝑐01 01 and

𝑐10 10 and 𝑐11 11

n bits for 𝟐𝒏 values

𝒂𝟎𝟎, 𝒂𝟎𝟏, 𝒂𝟏𝟎, 𝒂𝟏𝟏

𝑞0 = 𝑎0 0 + 𝑎1|1⟩

𝑞1 = 𝑏0 0 + 𝑏1|1⟩

Qubits: 𝒒𝟎, 𝒒𝟏

𝒒𝟎, 𝒒𝟏 = 𝒒𝟎 ⊗ 𝒒𝟏

= 𝒄𝟎𝟎 𝟎𝟎 + 𝒄𝟎𝟏 𝟎𝟏 + 𝒄𝟏𝟎 𝟏𝟎 + 𝒄𝟏𝟏 𝟏𝟏

• 00 : Both 𝑞0 and 𝑞1 are in state 0

• 𝑐00
2 : Probability of both 𝑞0 and 𝑞1 are in state 0

• 𝑐00
2 = 𝑎0

2 × 𝑏0
2

• 𝑐00 = 𝑎0
2 × 𝑏0

2 = 𝑎0 × 𝑏0
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The Power of Quantum Computers: Qubits

20 |  George Mason University

2 Classical Bits

00 or 01 or 10 or 11

n bits for 1 value

𝒙 ∈ [𝟎, 𝟐𝒏 − 𝟏]

2 Qubits

𝑐00 00 and 𝑐01 01 and

𝑐10 10 and 𝑐11 11

n bits for 𝟐𝒏 values

𝒂𝟎𝟎, 𝒂𝟎𝟏, 𝒂𝟏𝟎, 𝒂𝟏𝟏

𝑞0 = 𝑎0 0 + 𝑎1|1⟩

𝑞1 = 𝑏0 0 + 𝑏1|1⟩

Qubits: 𝒒𝟎, 𝒒𝟏

𝒒𝟎, 𝒒𝟏 = 𝒒𝟎 ⊗ 𝒒𝟏

= 𝒄𝟎𝟎 𝟎𝟎 + 𝒄𝟎𝟏 𝟎𝟏 + 𝒄𝟏𝟎 𝟏𝟎 + 𝒄𝟏𝟏 𝟏𝟏

𝒒𝟎, 𝒒𝟏 = 𝒒𝟎 ⊗ 𝒒𝟏 =
𝒂𝟎
𝒂𝟏

⊗
𝒃𝟎
𝒃𝟏

=
𝒂𝟎 ×

𝒃𝟎
𝒃𝟏

𝒂𝟏 ×
𝒃𝟎
𝒃𝟏

=

𝒂𝟎𝒃𝟎
𝒂𝟎𝒃𝟏
𝒂𝟏𝒃𝟎
𝒂𝟏𝒃𝟏

=

𝒄𝟎𝟎
𝒄𝟎𝟏
𝒄𝟏𝟎
𝒄𝟏𝟏
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Agenda – Session 1: Introduction
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▪ Introduction to Quantum Computing

• From Bit to Qubit

• From Logic Gates to Quantum Logic Gates

• Colab Hands-On (1): Basic Quantum Gates

▪ Introduction to Machine Learning

▪ Why Quantum Machine Learning
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Logic Gates v.s. Quantum Logic Gates

22 |  George Mason University
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Logic Gates v.s. Quantum Logic Gates

𝑥0 𝑦

𝒙𝟎 𝒚

0 1

1 0

Not Gate

Single-Qubit Gates

• Pauli operators: X, Y, Z Gates

• Hadamard gate: H Gate

• General gate: U Gate

Single-bit Gate

X0 Z10 1
1 0

1 0
0 −1

0 1
1 0

×
1
0

=
0
1

1 0
0 −1

×
0
1

=
0
−1

10

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Superposition

𝑥0 𝑦

𝒙𝟎 𝒚

0 1

1 0

Not Gate

Single-Qubit Gates

• Pauli operators: X, Y, Z Gates

• Hadamard gate: H Gate

• General gate: U Gate

Single-bit Gate

H0 U0
1

2

1 1
1 −1

cos(𝜃/2) −𝑒𝑖𝜆sin(𝜃/2)

𝑒𝑖𝜙sin(𝜃/2) 𝑒𝑖(𝜙+𝜆)cos(𝜃/2)

1

2

1 1
1 −1

×
1
0

=
1

2

1
1

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Single-Qubit Gates in Parallel

𝑥0 𝑦

𝒙𝟎 𝒚

0 1

1 0

Not Gate

Single-Qubit Gates

• Pauli operators: X, Y, Z Gates

• Hadamard gate: H Gate

• General gate: U Gate

Single-bit Gate

H𝜓1

H𝜓2

𝐻⨂2 00 =
1

2

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

×

1
0
0
0

=
1

2

1
1
1
1

𝐻⨂2 =
1

2

1 1
1 −1

⨂
1

2

1 1
1 −1

=
1

2

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

00 =
1
0
⨂

1
0

=

1
0
0
0

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Single-Qubit Gates in Parallel

𝑥0 𝑦

𝒙𝟎 𝒚

0 1

1 0

Not Gate

Single-Qubit Gates

• Pauli operators: X, Y, Z Gates

• Hadamard gate: H Gate

• General gate: U Gate

Single-bit Gate

H0

Z1 X

Qiskit / Quirk

H0

Z1 X

Wiki Quantum Gate

This Tutorial

𝜓 = 𝑍⨂𝐻 × 𝑋⨂𝐼 × |10⟩ 𝜓 = 𝐻⨂𝑍 × 𝐼⨂𝑋 × |01⟩

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Logic Gates v.s. Quantum Logic Gates
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𝑥0

𝑥1

𝑦

𝒙𝟎 𝒙𝟏 𝒚

0 0 0

0 1 0

1 0 0

1 1 1

AND Gate

Two-bits Gate ▪ Multi-Qubit Gates

• Controlled-Pauli gates

• Toffoli gate or CCNOT

• ……

+
1

0 Z

𝜓1

𝜓2

𝐶𝑁𝑂𝑇 × 10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

×

0
0
1
0

=

0
0
0
1

10 =
0
1
⨂

1
0

=

0
0
1
0

11 =
0
1
⨂

0
1

=

0
0
0
1

𝐶𝑍 × 𝜓1𝜓2 =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

×

𝑎
𝑏
𝑐
𝑑

=

𝑎
𝑏
𝑐
−𝑑

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Entanglement

28 |  George Mason University

𝑥0

𝑥1

𝑦

𝒙𝟎 𝒙𝟏 𝒚

0 0 0

0 1 0

1 0 0

1 1 1

AND Gate

Two-bits Gate ▪ Multi-Qubit Gates

• Controlled-Pauli gates

• Toffoli gate or CCNOT

• ……

+
0

0

H

+
0

0

X

𝐶𝑁𝑂𝑇 × 10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

×

0
0
1
0

=

0
0
0
1

= |1⟩⨂|1⟩

𝐶𝑁𝑂𝑇 × 𝐻⨂𝐼 × |00⟩ =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

×
1

2

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

× 00 =
1

2

1 0
0 1

1 0
0 1

0 1
1 0

0 −1
−1 0

×

1
0
0
0

=
1

2

1
0
0
1

|𝟎𝟎⟩
|01⟩
|10⟩
|𝟏𝟏⟩

https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Agenda – Session 1: Introduction

29 |  George Mason University

▪ Introduction to Quantum Computing

• From Bit to Qubit

• From Logic Gates to Quantum Logic Gates

• Colab Hands-On (1): Basic Quantum Gates

▪ Introduction to Machine Learning

▪ Why Quantum Machine Learning
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Hands-On Tutorial (1)
Basic Quantum Gates

https://github.com/weiwenjiang/QuantumFlow_Tutorial
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Agenda – Session 1: Introduction

31 |  George Mason University

▪ Introduction to Quantum Computing

▪ Introduction to Machine Learning

• Why Neural Networks

• Biological Neuron

• Artificial Neuron and Neural Network

• Learning

▪ Why Quantum Machine Learning
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Why Neural Networks

32 |  George Mason University

◼ An emulation of the biological neural systems

◼ Parallel computation 

◼ Adaptive connections

◼ Very different style from sequential computation

◼ Should be good for things that brains are good at (e.g., vision)

◼ Should be bad for things that brains are bad at (e.g., 23 x 7!)

◼ To solve practical problems by using novel learning algorithms 

inspired by the brain

◼ Learning algorithms can be very useful even if they are not how the brain actually 

works.
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Agenda – Session 1: Introduction

33 |  George Mason University

▪ Introduction to Quantum Computing

▪ Introduction to Machine Learning

• Why Neural Networks

• Biological Neuron

• Artificial Neuron and Neural Network

• Learning

▪ Why Quantum Machine Learning
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Biological Neuron

34 |  George Mason University

Human intelligence reside 

in the brain:

• Approximately 86 billion neurons in the human brain

• The brain is a network of neurons, connected with nearly 1014 − 1015 synapses 

How to equip intelligence in the machine?

• To understand how the brain network is constructed

• To mimic the brain
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Biological Neuron

35 |  George Mason University

Neurons work together:

• Cell body process the information

• Dendrites receive messages from other neurons

• Axon transmit the output to many smaller branches

• Synapses are the contact points between axon (Neuron 1) and dendrites (Neuron 2) for message 

passing

Cell body receives input signal from dendrites and produce output signal along axon,

which interact with the next neurons via synaptic weights

Synaptic weights are learnable to perform useful computations 

(e.g., Recognizing objects, understanding language, making plans, controlling the body.)
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Agenda – Session 1: Introduction

36 |  George Mason University

▪ Introduction to Quantum Computing

▪ Introduction to Machine Learning

• Why Neural Networks

• Biological Neuron

• Artificial Neuron and Neural Network

• Learning

▪ Why Quantum Machine Learning
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McCulloch-Pitts (MP) Neuron
The first computational model of a biological neuron @ 1943
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Perceptron
Frank Rosenblatt @ 1958
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Multi-Layer Perceptron (MLP)
Connect two neurons
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Multi-Layer Perceptron (MLP)
Connect more neurons and more layers
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Convolutional Neural Network: LeNet
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• The most known CNN for recognizing handwritten digits

• [LeCun et al., 1998]  
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Agenda – Session 1: Introduction
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▪ Introduction to Quantum Computing

▪ Introduction to Machine Learning

• Why Neural Networks

• Biological Neuron

• Artificial Neuron and Neural Network

• Learning

▪ Why Quantum Machine Learning
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What is Machine Learning?
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Supervised Learning Unsupervised Learning Reinforcement Learning

Inference/Execution

Given: Unseen data test dataset
A learned function 𝒇

𝒇( ) = 3Do: 

Given: Unlabeled data

(𝑥𝑖)

Goal: discover the “natural groupings” 
present in the data

Example: Clustering

Training

Given: Labeled data as training dataset

(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 training data, 𝑦𝑖: label 

𝑥𝑖 = 𝑦𝑖 = 3

Output: A learned function 𝒇 from X to Y

𝒇: 𝑥 ↦ 𝑦

Example: Classification Example: Neural Architecture Search 

Given: An environment that can give
us reward based on our action

Goal: Maximize the expected rewards

Controller 

(RNN)

Train from Scratch

To Obtain Accuracy 

A

Sample architecture NN 

with probability p

Compute gradient of p and 

scale it by A to update the 

controller 

Action

Env.

Reward
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Supervised Learning Unsupervised Learning Reinforcement Learning

Inference/Execution
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present in the data
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Sample architecture NN 
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controller 
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Env.

Reward

What is Machine Learning? --- Our Focus
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What is Neural Network?
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Supervised Learning

Training

Given: Labeled data as training dataset

(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 training data, 𝑦𝑖: label 

𝑥𝑖 = 𝑦𝑖 = 3

Output: A learned function 𝒇 from X to Y

𝒇: 𝑥 ↦ 𝑦

Inference/Execution

Given: Unseen data test dataset
A learned function 𝒇

𝒇( ) = 3Do: 

Example: Classification

An unknown classification function: 𝒈
𝒚 = 𝒈 𝒙 ; 𝒔. 𝒕. 𝒚𝒊 = 𝒈(𝒙𝒊)

Learn a function 𝒇 with parameters 𝜽, 𝒃 to approximate 𝒈:
ෝ𝒚 = 𝒇(𝒙, 𝜽, 𝒃)

Training is to minimize the loss function by adjusting parameters 𝜽, 𝒃

𝒎𝒊𝒏: 𝓛 𝒇 =

𝒊

( 𝒇 𝒙𝒊, 𝜽, 𝒃 − 𝒚𝒊)

Perceptron model, where 𝝈 is a non-linear function:
ෝ𝒚 = 𝝈(𝜽𝒙 + 𝒃)

Feedforward neural network:
𝒍𝟏 = 𝝈𝟏(𝜽𝟏𝒙 + 𝒃𝟏)
𝒍𝟐 = 𝝈𝟐 𝜽𝟐𝒍𝟏 + 𝒃𝟐

……
𝒍𝒏 = 𝝈𝒏(𝜽𝒏𝒍𝒏−𝟏 + 𝒃𝒏)
ෝ𝒚 = 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓(𝒍𝒏)
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What is Neural Network?
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Supervised Learning

Training

Given: Labeled data as training dataset

(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 training data, 𝑦𝑖: label 

𝑥𝑖 = 𝑦𝑖 = 3

Output: A learned function 𝒇 from X to Y

𝒇: 𝑥 ↦ 𝑦

Inference/Execution

Given: Unseen data test dataset
A learned function 𝒇

𝒇( ) = 3Do: 

Example: Classification

Feedforward neural network:
𝒍𝟏 = 𝝈𝟏(𝜽𝟏𝒙 + 𝒃𝟏)
𝒍𝟐 = 𝝈𝟐 𝜽𝟐𝒍𝟏 + 𝒃𝟐

……
𝒍𝒏 = 𝝈𝒏 𝜽𝒏𝒍𝒏−𝟏 + 𝒃𝒏
ෝ𝒚 = 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓(𝒍𝒏)

…
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𝜃1 𝑏1 𝜃2 𝑏2

ො𝑦 = ቊ
3 𝑙2,0 > 𝑙2,1
6 𝑙2,0 ≤ 𝑙2,1

Example of feedforward neural network for 𝑛 = 2
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Perceptron model, where 𝝈 is a non-linear function:
ෝ𝒚 = 𝝈(𝜽𝒙 + 𝒃)
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Agenda – Session 1: Introduction
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▪ Introduction to Quantum Computing

▪ Introduction to Machine Learning

▪ Why Quantum Machine Learning
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Why Using Quantum Computer for Machine Learning?
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• Imbalanced “demand and supply” of NN on classical computing

• The growing power of quantum computing

• Linear algebra is central for both quantum computing and machine learning
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NN on Classical Computer: Computation & Storage Demand > Supply
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Performance density almost stops increasing Number of DNN operations increases exponentially

Computation

Gap

Number of DNN parameters increases exponentially Energy efficiency of memory stops increasing 

Storage

Gap

Neural Network Size Traditional Hardware Capability

[ref] Xu, X., et al. 2018. Scaling for edge inference of deep neural networks. Nature Electronics, 1(4), pp.216-222.
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Consistently Increasing Qubits in Quantum Computers
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Linear Algebra is Central for Quantum Computing
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Matrix multiplication on classical 

computer using 16bit number

𝐴𝑁,𝑁 × 𝐵𝑁,1 = 𝐶𝑁,1

Data: 𝑀 ×𝑀 + 2 ×𝑀 × 16𝑏𝑖𝑡, 𝑀 = 22

Operation: Multiplication:𝑴×𝑴

Accumulation: 𝑴× (𝑴− 𝟏)

Special matrix multiplication on 

quantum computer

q0

q1

0

0

H

H

(X)

(Y)

Data: K Qbits, K = logM = 2

Operation: K Hadamard (H) Gates

𝐴𝑁,𝑁 × 𝐵𝑁,1 =
1

2
×

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

×

𝑐00
𝑐01
𝑐10
𝑐11

=

𝑑00
𝑑01
𝑑10
𝑑11

𝑞0, 𝑞1 = 𝑐00 00 + 𝑐01 01 + 𝑐10 10 + 𝑐11 11

→

𝑐00
𝑐01
𝑐10
𝑐11

(vector representation)

𝐻⊗𝐻 𝑞0, 𝑞1

= 𝑑00 00 + 𝑑01 01 + 𝑑10 10 + 𝑑11 11

𝐻 ⊗𝐻 =
1

2

1 1
1 −1

⊗
1

2

1 1
1 −1

= 𝐴𝑁,𝑁
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Takeaway
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▪ Quantum Computing

▪ # of qubits grows rapidly

▪ Q-Circuit design is similar to classical ones, using quantum gates

▪ Machine Learning meets Quantum Computing

▪ Potential to solve computation-bound / memory-wall in classical

▪ What is quantum neural network? VQC v.s. Q-Based Accelerator
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