Resources

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial) https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI) https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

<u>https://jqub.ece.gmu.edu</u> (JQub Website) <u>https://jqub.ece.gmu.edu/categories/QF</u> (QuantumFlow Website for news and **slides**) <u>https://jqub.ece.gmu.edu/categories/QF/qfnn/</u> (QFNN Documents)

https://www.nature.com/articles/s41467-020-20729-5 (QuantumFlow Paper)

https://arxiv.org/pdf/2012.10360.pdf (Paper on How to Correct Map NN to Q) https://arxiv.org/pdf/2109.03806.pdf (QF-Mixer) https://arxiv.org/pdf/2109.03430.pdf (QF-RobustNN)

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

1 | George Mason University

Tools to Be Used

Google CoLab

Github – Tutorial

Pytorch

Quirk

Qiskit

Dr. Weiwen Jiang, ECE, GMU

George Mason University 2

Tutorial on QuantumFlow: A Co-Design Framework of Neural Network and Quantum Circuit towards Quantum Advantage

Session 1: Introduction to Quantum Computing and Machine Learning

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

Presenter

Weiwen Jiang Assistant Professor Electrical and Computer Engineering (ECE) George Mason University Room3247, Nguyen Engineering Building wjiang&@gmu.edu (703)-993-5083 https://jqub.ece.gmu.edu/

First HW/SW Co-Design Framework using NAS

Education Background

- Chongqing University (2013-2019)
- University of Pittsburgh (2017-2019)
- University of Notre Dame (2019-2021)

Research Interests

- HW/SW Co-Design
- Quantum Machine Learning

Best Paper Nominations:

Entanglement of Qubits!

Entanglement of QuantumFlow Collaborators

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

6 | George Mason University

Our Quantum Works

Published Papers:

[1] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "A co-design framework of neural networks and quantum circuits towards quantum advantage." *Nature communications* 12.1 (2021): 1-13.

[2] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. "When Machine Learning Meets Quantum Computers: A Case Study." *Asia and South Pacific Design Automation Conference* (ASP-DAC). IEEE, 2021.

[3] Zhepeng Wang, Zhiding Liang, Shangling Zhou, Caiwen Ding, Jinjun Xiong, Yiyu Shi, Weiwen Jiang, "Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs." *International Conference On Computer-Aided Design (ICCAD), IEEE/ACM, 2021.*

[4] Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Jinjun Xiong, Yiyu Shi, Weiwen Jiang, "Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow." *International Conference On Computer-Aided Design (ICCAD), IEEE/ACM, 2021.*

Invited Talks:

[1] Weiwen Jiang, "A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage." *IBM Quantum Summit 2020.*

[2] Weiwen Jiang, "Tutorial on QuantumFlow: A Co-Design Framework of Neural Network and Quantum Circuit towards Quantum Advantage." **ESWEEK 2021**

[3] Weiwen Jiang, "Tutorial on QuantumFlow: An End-to-End Quantum Neural Network Acceleration Framework." **QuantumWEEK 2021**

Agenda

- Session 1: Introduction (12:45 13:30)
- Session 2: QuatnumFlow Co-Design Framework (13:40 14:40)
- Session 3: QFNN: Open-Source Library (14:40 14:50)
- Session 4: QF-Mixer and QF-RobustNN (15:00 16:20)
- Session 5: Roadmap (16:30 17:15)

Agenda – Session 1: Introduction

Introduction to Quantum Computing

- From Bit to Qubit
- From Logic Gates to Quantum Logic Gates
- Colab Hands-On (1): Basic Quantum Gates

Introduction to Machine Learning

- Why Neural Networks
- Biological Neuron
- Artificial Neuron and Neural Network
- Learning

Why Quantum Machine Learning

Agenda – Session 2: QuantumFlow

General Framework for Quantum-Based Neural Network Accelerator

- Data Preparation and Encoding
- Colab Hands-On (2): From Classical Data to Quantum Data
- Quantum Circuit Design
- Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

Tutorial on QuantumFlow

Agenda – Session 3: QFNN API

Introduction to QFNN

• Structure: qf_circ, qf_net, qf_fb, qf_map

Building QuantumFlow using QFNN

- QF-pNet
- QF-hNet
- QF-FB

Beyond QuantumFlow with QFNN

- FFNN
- VQC
- QF-Mixer

Agenda – Session 4: Extensions

QF-Mixer: Exploring Quantum Neural Architecture

- Motivation: Existing Quantum Neuron Designs Can Be Complementary
- Design Principle: Mixing Designs is Harder Than Your Thoughts!
- Results

QF-RobustNN: Learning Noise in Quantum Neural Networks

- Introduction to Noise in Quantum Computing
- Motivation: Error Can Corrupt Quantum NN and Compiling Leads to Lengthy Learning
- Application-Specific Compiler is Needed
- Results
- Open Questions and Future Work

Agenda – Session 5: Roadmap

- Roadmap of Quantum Machine Learning
- Call for paper at "Electronics"
- Conclusion
- Q&A

Tools to Be Used

Google CoLab

Github – Tutorial

Pytorch

Quirk

Qiskit

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
 - From Bit to Qubit
 - From Logic Gates to Quantum Logic Gates
 - Colab Hands-On (1): Basic Quantum Gates
- Introduction to Machine Learning
- Why Quantum Machine Learning

Consistently Increasing Qubits in Quantum Computers

The Power of Quantum Computers: Qubit

Classical Bit

Reading out Information from Qubit (Measurement)

 $X = 0 \ or \ 1$

Quantum Bit (Qubit)

$$|\psi\rangle = |0\rangle$$
 and $|1\rangle$
 $|\psi\rangle = a_0|0\rangle + a_1|1\rangle$

s. t.
$$a_0^2 + a_1^2 = 100\%$$

$$|\psi\rangle \qquad \mathbf{\hat{q}} \qquad \begin{array}{c} a_0^2 & 0 & \mathbf{\hat{0}} \\ a_1^2 & 1 & \mathbf{\hat{1}} \\ a_1^2 & 1 & \mathbf{\hat{1}} \\ Probability \qquad Non-Deterministic \\ Computing \\ a_0^2 + a_1^2 = 100\% \\ 40\% + 60\% = 100\% \end{array}$$

Dr. Weiwen Jiang, ECE, GMU

The Power of Quantum Computers: Qubit

Classical Bit Representation:

$$|\psi\rangle = a_0|0\rangle + a_1|1\rangle = \begin{pmatrix} a_0\\a_1 \end{pmatrix}$$

Quantum Bit (Qubit)

 $X = 0 \ or \ 1$

Initially:

$$|\psi\rangle = |0\rangle$$
 and $|1\rangle$
 $|\psi\rangle = a_0|0\rangle + a_1|1\rangle$

s. t.
$$a_0^2 + a_1^2 = 100\%$$

 $|\psi\rangle = |0\rangle$, where $a_0 = 1$ and $a_1 = 0$ $|\psi\rangle = |0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$

The Power of Quantum Computers: Qubits

2 Classical Bits 00 or 01 or 10 or 11 n bits for 1 value $x \in [0, 2^n - 1]$

2 Qubits

 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

n bits for 2^{n} values $a_{00}, a_{01}, a_{10}, a_{11}$ Qubits: q_0, q_1 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$ $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$ $= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

- $|00\rangle$: Both q_0 and q_1 are in state $|0\rangle$
- c_{00}^2 : Probability of both q_0 and q_1 are in state $|0\rangle$

•
$$c_{00}^2 = a_0^2 \times b_0^2$$

•
$$c_{00} = \sqrt{a_0^2 \times b_0^2} = a_0 \times b_0$$

The Power of Quantum Computers: Qubits

2 Classical Bits 00 or 01 or 10 or 11 **n bits for 1 value** $x \in [0, 2^n - 1]$

2 Qubits

 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

n bits for 2^{n} values $a_{00}, a_{01}, a_{10}, a_{11}$ Qubits: q_0, q_1 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$ $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$ $= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle = {a_0 \choose a_1} \otimes {b_0 \choose b_1}$ $= \begin{pmatrix} a_0 \times \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \\ a_1 \times \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_0 \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{10} \end{pmatrix}$

Dr. Weiwen Jiang, ECE, GMU

Agenda – Session 1: Introduction

Introduction to Quantum Computing

- From Bit to Qubit
- From Logic Gates to Quantum Logic Gates
- Colab Hands-On (1): Basic Quantum Gates
- Introduction to Machine Learning
- Why Quantum Machine Learning

Logic Gates v.s. Quantum Logic Gates

Operator	$\operatorname{Gate}(s)$		Matrix
Pauli-X (X)	- X -		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	— Z —		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
Phase (S, P)			$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	- T -		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		-*- -*-	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Logic Gates v.s. Quantum Logic Gates

Single-bit Gate

Not Gate

Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

$$|0\rangle - X - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \times \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$

 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

 $|0\rangle$ $|1\rangle$

Superposition

Single-bit Gate

Single-Qubit Gates

 $\mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

 $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

$$|0\rangle - \bigcup \left[\begin{array}{c} \cos(\theta/2) & -e^{i\lambda}\sin(\theta/2) \\ e^{i\phi}\sin(\theta/2) & e^{i(\phi+\lambda)}\cos(\theta/2) \end{array} \right]$$

$$egin{aligned} R_x(heta) &= \exp(-iX heta/2) = egin{bmatrix} \cos(heta/2) & -i\sin(heta/2) \ -i\sin(heta/2) & \cos(heta/2) \end{bmatrix}, \ R_y(heta) &= \exp(-iY heta/2) = egin{bmatrix} \cos(heta/2) & -i\sin(heta/2) \ \sin(heta/2) & \cos(heta/2) \end{bmatrix}, \ R_z(heta) &= \exp(-iZ heta/2) = egin{bmatrix} \exp(-i heta/2) & -i\sin(heta/2) \ \sin(heta/2) & \cos(heta/2) \end{bmatrix}, \ R_z(heta) &= \exp(-iZ heta/2) = egin{bmatrix} \exp(-i heta/2) & -i\sin(heta/2) \ \sin(heta/2) & \cos(heta/2) \end{bmatrix}, \end{aligned}$$

|0>

 x_0

Single-Qubit Gates in Parallel

Single-bit Gate

$x_0 \longrightarrow y$

Not Gate

x_0	у
0	1
1	0

Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

Single-Qubit Gates in Parallel

Single-bit Gate

Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

 $|\psi\rangle = (Z \otimes H) \times (X \otimes I) \times |10\rangle$

 $|\psi\rangle = (H \otimes Z) \times (I \otimes X) \times |01\rangle$

Not Gate

x_0	у
0	1
1	0

Logic Gates v.s. Quantum Logic Gates

Two-bits Gate

- Multi-Qubit Gates
 - Controlled-Pauli gates
 - Toffoli gate or CCNOT

.....

George Mason Universit

Entanglement

Two-bits Gate

$\boldsymbol{x_0}$	$\boldsymbol{x_1}$	y
0	0	0
0	1	0
1	0	0
1	1	1

 $CNOT \times |10\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = |1\rangle \otimes |1\rangle \qquad \times |00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 10\rangle \\ |11\rangle$

- Multi-Qubit Gates
 - Controlled-Pauli gates
 - Toffoli gate or CCNOT

 $CNOT \times (H \otimes I) \times |00\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$ $\times |00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{vmatrix} 00 \\ 00 \\ 101 \\ 10 \end{vmatrix}$

28 | George Mason University

Agenda – Session 1: Introduction

Introduction to Quantum Computing

- From Bit to Qubit
- From Logic Gates to Quantum Logic Gates
- Colab Hands-On (1): Basic Quantum Gates
- Introduction to Machine Learning
- Why Quantum Machine Learning

Hands-On Tutorial (1) Basic Quantum Gates

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
- Introduction to Machine Learning
 - Why Neural Networks
 - Biological Neuron
 - Artificial Neuron and Neural Network
 - Learning
- Why Quantum Machine Learning

Why Neural Networks

An emulation of the biological neural systems

- Parallel computation
- Adaptive connections
- Very different style from sequential computation
 - Should be good for things that brains are good at (e.g., vision)
 - Should be bad for things that brains are bad at (e.g., 23 x 7!)
- To solve practical problems by using novel learning algorithms inspired by the brain
 - Learning algorithms can be very useful even if they are not how the brain actually works.

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
- Introduction to Machine Learning
 - Why Neural Networks
 - Biological Neuron
 - Artificial Neuron and Neural Network
 - Learning
- Why Quantum Machine Learning

Biological Neuron

Human intelligence reside

in the brain:

- Approximately **86 billion neurons** in the human **brain**
- The brain is a **network** of **neurons**, connected with nearly $10^{14} 10^{15}$ synapses

How to equip intelligence in the machine?

- To understand how the brain network is constructed
- To mimic the brain

Biological Neuron

Neurons work together:

- Cell body process the information
- **Dendrites** receive messages from other neurons
- Axon transmit the output to many smaller branches
- Synapses are the contact points between axon (Neuron 1) and dendrites (Neuron 2) for message passing

Cell body receives input signal from **dendrites** and produce output signal along **axon**, which interact with the next neurons via **synaptic weights**

Synaptic weights are learnable to perform useful computations

(e.g., Recognizing objects, understanding language, making plans, controlling the body.)

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
- Introduction to Machine Learning
 - Why Neural Networks
 - Biological Neuron
 - Artificial Neuron and Neural Network
 - Learning
- Why Quantum Machine Learning

McCulloch-Pitts (MP) Neuron The first computational model of a biological neuron @ 1943

Warren McCulloch

Walter Pitts

Assumptions:

- Binary devices (i.e.,
 x_i ∈ {0,1} and y ∈ {0,1})
- Identical synaptic weights (i.e., +1)
- Activation function *f* has a fixed threshold *θ*

Multi-Layer Perceptron (MLP) Connect two neurons

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

39 | George Mason University

Multi-Layer Perceptron (MLP) Connect more neurons and more layers

Convolutional Neural Network: LeNet

- The most known CNN for recognizing handwritten digits
 - [LeCun et al., 1998]

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
- Introduction to Machine Learning
 - Why Neural Networks
 - Biological Neuron
 - Artificial Neuron and Neural Network
 - Learning
- Why Quantum Machine Learning

What is Machine Learning?

Supervised Learning

Example: Classification

Training

Given: <u>Labeled</u> data as training dataset

 (x_i, y_i) : x_i training data, y_i : label

 $x_i =$

 $y_i = 3$

Output: A learned function *f* from X to Y

 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function **f**

f(**B** = 3 Do:

Unsupervised Learning

Example: Clustering

Given: Unlabeled data

 (x_i)

Goal: discover the "natural groupings" present in the data

Reinforcement Learning

Example: Neural Architecture Search

Given: An environment that can give us reward based on our action

Goal: Maximize the expected rewards

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

George Mason University 43

What is Machine Learning? --- Our Focus

Supervised Learning

Example: Classification

Training

Given: Labeled data as training dataset

 (x_i, y_i) : x_i training data, y_i : label

 $x_i = 3 \qquad y_i =$

 $y_i = 3$

Output: A learned function **f** from X to Y

 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function *f*

Do: f(3) = 3

Unsupervised Learning

Example: Clustering

Given: <u>Unlabeled</u> data

 (x_i)

ioal: discover the "natural groupings" present in the data

Reinforcement Learning Example: Neural Architecture Search

Given: An <u>environment</u> that can give us <u>reward</u> based on our <u>action</u>

Goal: Maximize the expected rewards

Tutorial on QuantumFlow

Dr. Weiwen Jiang, ECE, GMU

What is Neural Network?

Supervised Learning

Example: Classification

Training

Given: Labeled data as training dataset

 (x_i, y_i) : x_i training data, y_i : label

 $x_i = 3 \qquad y_i = 3$

Output: A learned function **f** from X to Y

 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function *f*

Do: f(3) = 3

An unknown classification function: gy = g(x); s.t. $y_i = g(x_i)$

Learn a function f with parameters θ , b to approximate g: $\widehat{y} = f(x, \theta, b)$

Training is to minimize the loss function by adjusting parameters θ , b

min:
$$\mathcal{L}(f) = \sum_{i} (f(x_i, \theta, b) - y_i)$$

Perceptron model, where σ is a non-linear function:

 $\widehat{y} = \sigma(\theta x + b)$

Feedforward neural network:

$$l_1 = \sigma_1(\theta_1 x + b_1)$$

 $l_2 = \sigma_2(\theta_2 l_1 + b_2)$

$$l_n = \sigma_n(\theta_n l_{n-1} + b_n)$$

$$\hat{y} = classifier(l_n)$$

Dr. Weiwen Jiang, ECE, GMU

45 | George Mason University

Tutorial on QuantumFlow

What is Neural Network?

Supervised Learning

Example: Classification

Training

Given: Labeled data as training dataset

(x_i, y_i) : x_i training data, y_i : label

 $x_i = 3 \qquad y_i = 3$

Output: A learned function *f* from X to Y

 $f: x \mapsto y$

Inference/Execution

Given: Unseen data test dataset A learned function *f*

Tutorial on QuantumFlow

 $l_{1,0}$ x_0 $l_{2,0}$ σ_1 Prob. of **3** σ_2 x_1 l_{11} σ_1 , x_2 $l_{2,1}$ Prob. of 6 (σ_2) *l*_{1,m} $\hat{y} = \begin{cases} 3 & l_{2,0} > l_{2,1} \\ 6 & l_{2,0} \le l_{2,1} \end{cases}$ x_n b_2 θ_1 b_1 θ_2 (Parameters)

Example of feedforward neural network for n = 2

Perceptron model, where σ is a non-linear function:

 $\widehat{y} = \sigma(\theta x + b)$

Feedforward neural network:

 $l_1 = \sigma_1(\theta_1 x + b_1)$ $l_2 = \sigma_2(\theta_2 l_1 + b_2)$

$$l_n = \sigma_n(\theta_n l_{n-1} + b_n)$$

$$\hat{y} = classifier(l_n)$$

Dr. Weiwen Jiang, ECE, GMU

46 | George Mason University

Agenda – Session 1: Introduction

- Introduction to Quantum Computing
- Introduction to Machine Learning
- Why Quantum Machine Learning

Why Using Quantum Computer for Machine Learning?

- Imbalanced "demand and supply" of NN on classical computing
- The growing power of quantum computing
- Linear algebra is central for both quantum computing and machine learning

NN on Classical Computer: Computation & Storage Demand > Supply

Neural Network Size

Traditional Hardware Capability

[ref] Xu, X., et al. 2018. Scaling for edge inference of deep neural networks. Nature Electronics, 1(4), pp.216-222.

Consistently Increasing Qubits in Quantum Computers

Linear Algebra is Central for Quantum Computing

Matrix multiplication on classical computer using 16bit number

$$A_{N,N} \times B_{N,1} = C_{N,1}$$

 $\begin{aligned} |q_0, q_1\rangle &= c_{00} |00\rangle + c_{01} |01\rangle + c_{10} |10\rangle + c_{11} |11\rangle \\ &\rightarrow \begin{bmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{bmatrix} \quad \text{(vector representation)} \end{aligned}$

$$\begin{split} H \otimes H &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = A_{N,N} \\ H \otimes H |q_0, q_1\rangle \\ &= d_{00} |00\rangle + d_{01} |01\rangle + d_{10} |10\rangle + d_{11} |11\rangle \end{split}$$

Data: $(M \times M + 2 \times M) \times 16bit$, $M = 2^2$ Operation: Multiplication: $M \times M$

Accumulation: $M \times (M - 1)$

Special matrix multiplication on quantum computer

$$\begin{array}{c|c} q0 & |0\rangle & \psi(X) & H \\ q1 & |0\rangle & \psi(Y) & H \end{array}$$

Data: **K** Qbits, $\mathbf{K} = \log \mathbf{M} = 2$

Operation: K Hadamard (H) Gates

Takeaway

- Quantum Computing
 - # of qubits grows rapidly
 - Q-Circuit design is similar to classical ones, using quantum gates
- Machine Learning meets Quantum Computing
 - Potential to solve computation-bound / memory-wall in classical
 - What is quantum neural network? VQC v.s. Q-Based Accelerator

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030 Tel: (703)993-1000