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Quantum Computers Have Come to Our Life

3 |  George Mason University
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The Power of Quantum Computers: Qubit

4 |  George Mason University

Classical Bit

Quantum Bit (Qubit)

𝑋 = 0 𝒐𝒓 1

|𝜓⟩ = 0 |1⟩and

𝜓 = 𝑎0 0 + 𝑎1|1⟩

01

Reading out Information from Qubit 

(Measurement)

𝜓

0

1𝑎1
2

𝑎0
2

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑁𝑜𝑛−𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

1

0

𝑎0
2 + 𝑎1

2 = 100%

40%+ 60% = 100%

=
𝑎0
𝑎1
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The Power of Quantum Computers: Qubits

5 |  George Mason University

2 Classical Bits

00 or 01 or 10 or 11

n bits for 1 value

𝒙 ∈ [𝟎, 𝟐𝒏 − 𝟏]

2 Qubits

𝑐00 00 and 𝑐01 01 and

𝑐10 10 and 𝑐11 11

n bits for 𝟐𝒏 values

𝒂𝟎, 𝒂𝟏, 𝒂𝟐, ⋯ 𝒂𝒏

𝑞0 = 𝑎0 0 + 𝑎1|1⟩

𝑞1 = 𝑏0 0 + 𝑏1|1⟩

Qubits: 𝒒𝟎, 𝒒𝟏

𝒒𝟎, 𝒒𝟏 = 𝒒𝟎 ⊗ 𝒒𝟏

= 𝒄𝟎𝟎 𝟎𝟎 + 𝒄𝟎𝟏 𝟎𝟏 + 𝒄𝟏𝟎 𝟏𝟎 + 𝒄𝟏𝟏 𝟏𝟏

𝒒𝟎, 𝒒𝟏 = 𝒒𝟎 ⊗ 𝒒𝟏 =
𝒂𝟎
𝒂𝟏

⊗
𝒃𝟎
𝒃𝟏

=
𝒂𝟎 ×

𝒃𝟎
𝒃𝟏

𝒂𝟏 ×
𝒃𝟎
𝒃𝟏

=

𝒂𝟎𝒃𝟎
𝒂𝟎𝒃𝟏
𝒂𝟏𝒃𝟎
𝒂𝟏𝒃𝟏

=

𝒄𝟎𝟎
𝒄𝟎𝟏
𝒄𝟏𝟎
𝒄𝟏𝟏
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Computation: Logic Gates vs. Quantum Logic Gates

6 |  George Mason University

𝑌 = 𝑋 × |𝐴⟩
X𝜓

A Y

𝑨 𝒀

0 1

1 0

𝑌 = ҧ𝐴

A
𝑎0
𝑎1

Y
𝑦0
𝑦1

X
0 1
1 0

= ×
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Single-Qubit Gates and Superposition

𝑥0 𝑦

𝒙𝟎 𝒚

0 1

1 0

Not Gate

Single-Qubit Gates

• Pauli operators: X, Y, Z Gates

• Hadamard gate: H Gate

• General gate: U Gate

Single-bit Gate

H0
1

2

1 1
1 −1

1

2

1 1
1 −1

×
1
0

=
1

2

1
1

X0
0 1
1 0

0 1
1 0

×
1
0

=
0
1

10 →
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Multi-Qubit Gates and Entanglement
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▪ Multi-Qubit Gates

• Controlled-Pauli gates

• Toffoli gate or CCNOT

• ……

𝐶𝑁𝑂𝑇 × 10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

×

0
0
1
0

=

0
0
0
1

10 =
0
1
⨂

1
0

=

0
0
1
0

11 =
0
1
⨂

0
1

=

0
0
0
1

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0+

0

0

X

+
0

0

H

𝐶𝑁𝑂𝑇 × 𝐻⨂𝐼 × |00⟩ =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

×
1

2

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

× 00 =
1

2

1 0
0 1

1 0
0 1

0 1
1 0

0 −1
−1 0

×

1
0
0
0

=
1

2

1
0
0
1

|𝟎𝟎⟩
|01⟩
|10⟩
|𝟏𝟏⟩
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Hands-On Tutorial (1)
Basic Quantum Gates

https://github.com/weiwenjiang/QuantumFlow_Tutorial
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_1/Tutorial_0_Basic_Quantum_Gate.ipynb
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Outline

10 |  George Mason University

▪ Background

▪ Co-Design: from Classical to Quantum

▪ QuantumFlow

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

▪ Co-Design toward Quantum Advantage

▪ Recent works and conclusion



QuantumFlow @ Villanova University Dr. Weiwen Jiang, ECE, GMU

Co-Design

11 |  George Mason University

Co-Design Co-Design

U(W)

???
U(N)

+

Given:

• Dataset (e.g., ImageNet)

• ML Task (e.g., classification)

• HW (e.g., FPGA spec.)

Do:

• Neural network design

• FPGA design

Objective:

• Accuracy

• Latency

• Energy

• …
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My Previous Background: Co-                 “             ”

12 |  George Mason University

Co-Design

• What is the best Neural Network Architecture for FPGAs

• What is the best FPGA Architecture for neural networks

• Model optimization (pruning and quantization)?

• Mapping and scheduling?

• Library

Co-Design

Framework

(e.g., Our

FNAS)
DNN on FPGA 

(UCLA)

DNNBuilder

(UIUC)

NAS

(Google)
Network exploration

Programming library

Place & Route
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Current Works: Co-Design of Neural Networks and Quantum Circuit

13 |  George Mason University

• What is the best Neural Network Architecture for QC?

• What is the best QC design for neural networks

• ……

• ……

• Library

Co-Design

Framework

QuantumFlow

QF-RobustNN

QFNN

QF-Mixer

Co-Design

U(W)

???
U(N)

+

Network exploration

Programming library

Logic-physical Compile
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Co-Design of NN 

Systems on 

Quantum Computer

Co-Design

U(W)

???
U(N)

+



Motivation and Challenges
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27
65

127

433

1121

0

200

400

600

800

1000

1200

2019 2020 2021 2022 2023

Falcon

Eagle
Hummingbird

Osprey

Condor

deployed on

09/01/20

we are here today

Perf. of classical computing stops increasingDeep neural network grows exponentially Quantum computer grows exponentially

Fundamental questions:

• Can we implement Neural Network on Quantum Computers? 

• Can we achieve benefits in doing so?

Further questions:

• What is the best neural network architecture for quantum acceleration?

• What is the problem for near-term quantum computing, i.e., in NISQ era?



Motivation and Challenges
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Fundamental questions:

• Can we implement Neural Network on Quantum Computers? 

• Can we achieve benefits in doing so?

𝑶(𝑵) → 𝑶(𝒍𝒐𝒈𝟑𝑵)

Paper Published at:

Invited Contribution and Tutorial Talks at:
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    ’            x   ?                  ?

…

𝑊0

𝑊1

𝑊2

𝑊𝑁−1

𝑥0

𝑥1

𝑥2

𝑥𝑁−1

𝑂

• Classical computer with 1 MAC

𝑇𝑖𝑚𝑒: 𝑂(𝑁)

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): 𝑂(1)

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆: 𝑶(𝑵)

• Classical computer with N MAC

𝑇𝑖𝑚𝑒: 𝑂(1)

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): 𝑂(𝑁)

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆: 𝑶(𝑵)

qubits

circuit length

𝑞0

𝑞1

H

H

X

X

X𝑂

in
p
u
t

Z

Z

• Time-Space Complexity in Quantum computer

𝑇𝑖𝑚𝑒: Circuit Length

𝑆𝑝𝑎𝑐𝑒 (Comp. Res.): Qubits

𝑻𝒊𝒎𝒆 × 𝑺𝒑𝒂𝒄𝒆 (𝑻 − 𝑺): 𝑸𝒖𝒃𝒊𝒕𝒔 × 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑳𝒆𝒏𝒈𝒕𝒉

• Given that 𝑻 − 𝑺 complexity on classical computer 

is 𝑶 𝑵 , Quantum Advantage is achieved if 𝑻 − 𝑺

complexity on Quantum can be 𝑶(𝒑𝒍𝒐𝒚𝒍𝒐𝒈𝑵) or 

lower. ------- Exponential Speedup!

17 |  George Mason University
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    ’           ?
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…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Goal 1: Correctly Implement!

𝑂 = 𝛿 ෍

𝑖∈[0,𝑁)

𝑥𝑖 ×𝑊𝑖

where 𝛿 is a quadratic function

Goal 3: Efficiently Implement!

Classical Computing:

Complexity of 𝑶(𝑵)

Quantum Computing:

Can we reduce complexity to 

𝑶(𝒑𝒍𝒐𝒚𝒍𝒐𝒈𝑵) , say 𝑶(𝒍𝒐𝒈𝟐𝑵)?

Goal 2: Scale-Up!

…

𝑥0

𝑥1

𝑥2

𝑥𝑛

𝑞0
𝑞1
𝑞2
𝑞3

?U(W) U(N)

+
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Outline – QuantumFlow

19 |  George Mason University

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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Neural Network Accelerator Design on Classical Hardware

20 |  George Mason University

CPU/GPU
Accelerator

FPGA/ASIC
Accelerator

Quantum
Accelerator

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝐼0

𝐼1

𝐼2

𝐼𝑁

𝑂

Pre-Processing

HW Accelerator

* +
+

+

+
+

+

*
*
*
*
*
*
*

w
w
w
w
w
w
w
w

I0

I1

I2

I3

I4

I5

I6

I7
+ Post-Processing

O
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Neural Network Accelerator Design from Classical to Quantum Computing

21 |  George Mason University

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝐼0

𝐼1

𝐼2

𝐼𝑁

𝑂

Pre-Processing

HW Accelerator

* +
+

+

+
+

+

*
*
*
*
*
*
*

w
w
w
w
w
w
w
w

I0

I1

I2

I3

I4

I5

I6

I7
+ Post-Processing

O

Pre-Processing

Post-Processing

Quantum Circuit

UP UN

|0>

|0>

|0>

(1) Data Pre-Processing (PreP)

(2) HW Acceleration

(3) Data Post-Processing (PostP)

(1) Data Pre-Processing (PreP)

(2) HW/Quantum Acceleration

(2.1) Up Quantum-State-Preparation

(2.2) UN Quantum Neural Computation

(2.3) M Measurement

(3) Data Post-Processing (PostP)

PreP + UP + UN + M + PostP
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PreP + UP + UN + M + PostP : Data Pre-Processing
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0.0039 0.2118

0.0039 0.2784
0.2941 0.0275
0.5961 0.0667

0.0863 0.3176

0.1137 0.3608
0.5216 0.0588

0.1725 0.0039

Step 1: Downsampling

From 𝟐𝟖 × 𝟐𝟖 to 4× 𝟒

• Given: (1) 28 × 28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)

• Do: (1) downsampling from 28 × 28 to 2𝑄 = 16 = 4 × 4; (2) converting data to be the state vector in a unitary matrix

• Output: A unitary matrix, 𝑀16×16

0.0039 0.2118

0.0039 0.2784
0.2941 0.0275
0.5961 0.0667

0.0863 0.3176

0.1137 0.3608
0.5216 0.0588

0.1725 0.0039

Step 2: Formulate Unitary Matrix

Applying SVD method
(See Listing 1 in ASP-DAC SS Paper)

Unitary matrix: 𝑀16×16

[SS] W. Jiang, et al. When Machine Learning Meets Quantum Computers: A Case Study, ASP-DAC’  

https://arxiv.org/pdf/2012.10360.pdf
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PreP + UP + UN + M + PostP --- Data Encoding / Quantum State Preparation
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• Given: The unitary matrix provided by PreP, 𝑀16×16

• Do: Quantum-State-Preparation, encoding data to qubits

• Verification: Check the amplitude of states are consistent with the data in the unitary matrix, 𝑀16×16

Let’s use a 2-qubit system as an example to encode a matrix 𝑀4×4

0.3 0.5
0.7 0.9

|0⟩

|0⟩

PreP UP
input

  𝟐𝟑𝟒𝟑 𝑋
  𝟑𝟗𝟎𝟒 𝑋

𝑋 𝑋
𝑋 𝑋

  𝟓𝟒𝟔𝟔 𝑋
  𝟕𝟎𝟐𝟖 𝑋

𝑋 𝑋
𝑋 𝑋

State Transition:

|00⟩

IBM Qiskit Implementation:

inp = QuantumRegister(4, ”in_qubit”)

circ = QuantumCircuit(inp)

iniG = UnitaryGate(data_matrix,      =”     ” 

circ.append(iniG, inp[0:4])

data_matrix

data_matrix

  𝟐𝟑𝟒𝟑 𝑋
  𝟑𝟗𝟎𝟒 𝑋

𝑋 𝑋
𝑋 𝑋

  𝟓𝟒𝟔𝟔 𝑋
  𝟕𝟎𝟐𝟖 𝑋

𝑋 𝑋
𝑋 𝑋

×

1
0
0
0

=

  𝟐𝟑𝟒𝟑
  𝟑𝟗𝟎𝟒
  𝟓𝟒𝟔𝟔
  𝟕𝟎𝟐𝟖
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Hands-On Tutorial (1)
PreP + UP

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_1_DataPreparation.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_1_DataPreparation.ipynb
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Outline – QuantumFlow

30 |  George Mason University

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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PreP + UP + UN + M + PostP --- Neural Computation
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…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

• Given: (1) A circuit with encoded input data 𝒙; (2) the trained binary weights 𝒘 for one 

neural computation, which will be associated to each data.

• Do: Place quantum gates on the qubits, such that it performs
𝒙∗𝒘 𝟐

𝒙
.

• Verification: Whether the output data of quantum circuit and the output computed using 

torch on classical computer are the same.

Target: 𝑂 =
σ𝑖 𝑥𝑖×𝑤𝑖

𝑥

2

Step 1: 𝑚𝑖 = 𝑥𝑖 × 𝑤𝑖 Step 2: 𝑛 =
σ𝑖 𝑚𝑖

𝑥
Step 3: 𝑂 = 𝑛2

• Assumption 1: Parameters/weights (W0 --- WN) are binary weight, either 

+1 or -1

• Assumption 2: The weight 𝑊0 = +1, otherwise we can use −𝒘 (quadratic 

func.)
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PreP + UP + UN + M + PostP --- Neural Computation: Step 1

32 |  George Mason University

Step 1: 𝑚𝑖 = 𝑥𝑖 × 𝑤𝑖

𝑞0

𝑞1

𝒘 =

𝑤0

𝑤1
𝑤2

𝑤3

input
Z

𝑎0 |00⟩

𝑎1 |01⟩

𝑎2 |10⟩

𝑎3 |11⟩

InputUOutput

input

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

𝑎0 |00⟩

𝑎1 |01⟩

𝑎2 |10⟩

𝑚3 = −𝑎3 |11⟩

𝒙 =

𝑎0
𝑎1
𝑎2
𝑎3 𝑤3 = −1 𝑚3 = −1 × 𝑎3 = −𝑎3

= ×

×=

Quantum Circuit

EX: 4 input data on 2 qubits

𝑤0 = 1
𝑤1 = 1
𝑤2 = 1
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PreP + UP + UN + M + PostP --- Neural Computation: Step 1

35 |  George Mason University

𝑞0

𝑞1

Step 1: 𝑚𝑖 = 𝑥𝑖 × 𝑤𝑖

EX: 4 input data on 2 qubits

𝑞0

𝑞1
𝒘 =

+1
+1
+1
−1

input
Z

𝑞0

𝑞1
𝒘 =

+1
+1
−1
+1

input
ZX X

𝑞0

𝑞1
𝒘 =

+1
−1
+1
+1

input
Z

X X

Z Flip the sign of |11⟩

𝑞0

𝑞1 Z

𝑞0

𝑞1

Z

Flip the sign of |01⟩

Flip the sign of |10⟩

𝒘 =

+1
+1
+1
−1

or 

+1
+1
−1
−1

or 

+1
−1
−1
−1

or 

+1
+1
−1
+1

or 

+1
−1
−1
+1

or 

+1
−1
+1
+1
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PreP + UP + UN + M + PostP --- Neural Computation: Step 2
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Step 2: 𝑛 =
σ𝑖 𝑚𝑖

𝑥

𝑞0

𝑞1
input

𝑚0 |00⟩

𝑚1 |01⟩

𝑚2 |10⟩

𝑚3 |11⟩

Input

EX: 4 input data on 2 qubits

෍

𝑖

𝑚𝑖 / 𝑥 |00⟩

Do not care 1 |01⟩

Do not care 2 |10⟩

Do not care 3 |11⟩

Output

H

HZ

Z

input

U= ×

= ×
1 1
∗ ∗

1 1
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

1

𝑥

Quantum Circuit

note: 𝑥 = 2𝑁
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PreP + UP + UN + M + PostP -- Neural Computation (Step 3) & Measurement

37 |  George Mason University

Step 3: 𝑂 = 𝑛2

𝑞0

𝑞1

EX: 4 input data on 2 qubits ෍

𝑖

𝑚𝑖 / 𝑥 |000⟩

0 |001⟩

Do not care 1 |010⟩

0 |011⟩

Do not care 2 |100⟩

0 |101⟩

Do not care 3 |110⟩

0 |111⟩

Input

H

H

X

X

X𝑂

𝑿⨂𝟐

Do not care 3 |000⟩

0 |001⟩

Do not care 2 |010⟩

0 |011⟩

Do not care 1 |100⟩

0 |101⟩

෍

𝑖

𝑚𝑖 / 𝑥 |110⟩

0 |111⟩

CCX

Do not care |000⟩

0 |001⟩

Do not care |010⟩

0 |011⟩

Do not care |100⟩

0 |101⟩

0 |110⟩

෍

𝑖

𝑚𝑖 / 𝑥 |111⟩

𝑃 𝑂 = |1⟩ = 𝑃{|001⟩} + 𝑃{|011⟩} + 𝑃{|101⟩} + 𝑃{|111⟩} =
σ𝑖 𝑚𝑖

𝑥

2
Output

in
p

u
t Z

Z
input
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Hands-On Tutorial (2)
PreP + UP + UN

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_2_Hidden_NeuralComp.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_2_Hidden_NeuralComp.ipynb
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Outline – QuantumFlow
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▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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Challenge 1: Non-linearity is Needed, But Difficult in Quantum Circuit
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|0⟩

|0⟩

|0⟩

|0⟩

⋯

|0⟩

UP 𝑈𝑁(𝜃1) 𝑈𝑁(𝜃2)

…

𝑥0

𝑥1

𝑥2

𝑥𝑛

𝑙1,0

𝑙1,1
𝜎1

𝜎1

𝑙2,0

𝑙2,1

Prob. of 3

Prob. of 6

𝜎2

𝜎2

𝜃1
𝜃2

Linear
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Challenge 2: Quantum-Classical Interface is Expensive
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…

𝑥0

𝑥1

𝑥2

𝑥𝑛

𝑙1,0

𝑙1,1
𝜎1

𝜎1

𝑙2,0

𝑙2,1

Prob. of 3

Prob. of 6

𝜎2

𝜎2

|0⟩

|0⟩

|0⟩

|0⟩

⋯

|0⟩

UP 𝑈𝑁(𝜃1)
𝒍𝟏 = 𝝈𝟏(𝒙 ⋅ 𝜽)

Classical ComputingQuantum

|0⟩

|0⟩

|0⟩

|0⟩

⋯

|0⟩

UP 𝑈𝑁(𝜃2)

Quantum

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

Ref [1] 

dominate

https://arxiv.org/pdf/2006.14815.pdf
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Challenge 3: High Complexity in the Previous Design

42 |  George Mason University

𝑞0

𝑞1

H

H

X

X

X𝑂

in
p

u
t Z

Z

UN

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Cost Complexity

Classical Computing

No Parallelism Full Parallelism

Time (T) O(𝑁) O(1)

Space (S) O(1) O(𝑁)

Cost (TS) O(𝑁) O(𝑁)

Quantum Computing

Previous Design Optimization

Circuit Depth (T) O(𝑁) ???

Qubits (S) O(log𝑁) O(log𝑁)

Cost (TS) O(𝑁 ⋅ log𝑁) target O(ploylog 𝑁)
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    ’           ?
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…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Goal 1: Correctly Implement!

𝑂 = 𝛿 ෍

𝑖∈[0,𝑁)

𝑥𝑖 ×𝑊𝑖

where 𝛿 is a quadratic function

Goal 3: Efficiently Implement!

Classical Computing:

Complexity of 𝑶(𝑵)

Quantum Computing:

Can we reduce complexity to 

𝑶(𝒑𝒍𝒐𝒚𝒍𝒐𝒈𝑵) , say 𝑶(𝒍𝒐𝒈𝟐𝒏)?

Goal 2: Scale-Up!

…

𝑥0

𝑥1

𝑥2

𝑥𝑛

𝑞0
𝑞1
𝑞2
𝑞3

?U(W) U(N)

+
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Outline – QuantumFlow
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▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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Design Direction 1: NN → Quantum Circuit
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𝑞0

𝑞1

H

H

X

X

X𝑂

in
p

u
t Z

Z

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Digital Numbers Amplitude Encoding
Converting to Unitary Matrix

𝑁 numbers are encoded to log𝑁 qubits
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Design Direction 2: Quantum Circuit → NN
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𝑞0

𝑞1

H

H

X

X

X𝑂

in
p

u
t Z

Z

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Amplitude of |00⟩ is 𝒏

Probability of O = |1⟩ is 𝒏𝟐

Digital Numbers Amplitude Encoding
Converting to Unitary Matrix

𝑁 numbers are encoded to log𝑁 qubits

Random Variable
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rvUN --- Neural Computation
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Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!
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𝑟𝑣𝑈𝑁1𝑟𝑣𝑈𝑁0

𝑈𝑁1

𝑈𝑁0

…

𝑥0

𝑥1

𝑥2

𝑥15

𝑙1,0
𝜎1

Prob. of 3

Prob. of 6

𝑙2,0

𝜎2

𝑙2,1
𝜎2

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

UP

|0⟩

UP

X
X

|0⟩

𝑊1 𝑊1

X
|0⟩ X

Prob. of 3

Prob. of 6

𝑊2 𝑊2

𝑙1,1
𝜎1
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Hands-On Tutorial (3)
PreP+ UP+ UN+ M+ PostP (MNIST)

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_3_Full_MNIST_Prediction.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_3_Full_MNIST_Prediction.ipynb
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Outline – QuantumFlow

51 |  George Mason University

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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Challenge 3: High Complexity in the Previous Design
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𝑞0

𝑞1

H

H

X

X

X𝑂

in
p

u
t Z

Z

UN

…

𝑊0

𝑊1

𝑊2

𝑊𝑁

𝑥0

𝑥1

𝑥2

𝑥𝑁

𝑂

Cost Complexity

Classical Computing

No Parallelism Full Parallelism

Time (T) O(𝑁) O(1)

Space (S) O(1) O(𝑁)

Cost (TS) O(𝑁) O(𝑁)

Quantum Computing

Previous Design Optimization

Circuit Depth (T) O(𝑁) ???

Qubits (S) O(log𝑁) O(log𝑁)

Cost (TS) O(𝑁 ⋅ log𝑁) target O(ploylog 𝑁)
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QuantumFlow: Taking NN Property to Design QC
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S1 S2S0 S0 -> S1:
𝑣𝑜; 𝑣𝑥1; 𝑣𝑥2; … ; 𝑣𝑥𝑛 ×

1
0…
0

= (𝑣0)

𝑆1 = 0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0 𝑇

S1 -> S2:

W = +1,−1,+1,+1,−1,−1, +1,+1, +1, −1, −1,+1,+1,−1,+1,+1 𝑇

|0000>  |0001>  |0010>  |0011>  |0100>  |0101> |0110>  |0111>  |1000>  |1001>  |1010>  |1011> |1100>  |1101> |1110>  |1111>

𝑆2 = 0,−0.59, 0, 0, −0,−0.07, 0, 0, 0, −0.66, −0.33, 0.33, 0, −0, 0, 0 𝑇

|0000> |0001>  |0010>  |0011>

|0100>  |0101> |0110>  |0111>

|1000>  |1001>  |1010>  |1011>

|1100>  |1101> |1110>  |1111>

Implementation 1 (example in Quirk):
|0000> |0001>  |0010>  |0011>

|0100>  |0101> |0110>  |0111>

|1000>  |1001>  |1010>  |1011>

|1100>  |1101> |1110>  |1111>

Implementation 2:

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.
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QuantumFlow: Taking NN Property to Design QC
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S1 S2S0
Property from NN

• The weight order is not necessary to be fixed, which can be adjusted 

if the order of inputs are adjusted accordingly

• Benefit: No need to require the positions of sign flip are exactly the

same with the weights; instead, only need the number of signs are 

the same. 

𝑆1 = 0, 0.59, 0, 𝟎, 𝟎, 0.07, 0, 0, 0.66, 𝟎. 𝟑𝟑, 𝟎. 𝟑𝟑, 0, 0, 0, 0 𝑇

𝑆1′ = 0, 0.59, 0, 𝟎. 𝟑𝟑, 𝟎. 𝟑𝟑, 0.07, 0, 0, 0.66, 𝟎, 𝟎, 0, 0, 0, 0 𝑇

|1010> 

|0011>

|1011>

ori

fin

+ - - +

- + + -
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QuantumFlow: Taking NN Property to Design QC

55 |  George Mason University

S1 S2S0

Gates Cost

Z 1

CZ 1

C2Z 3

C3Z 5

C4Z 6

… …

CkZ 2k-1

Used gates and Costs

Worst case: all gates

O(log2N)
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Hands-On Tutorial (4)
PreP + UP+ Optimized UN+ M+PostP (MNIST)

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_4_QAccelerate.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_4_QAccelerate.ipynb
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Outline – QuantumFlow

57 |  George Mason University

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

• Data Preparation and Encoding

• Colab Hands-On (2): From Classical Data to Quantum Data

• Quantum Circuit Design

• Colab Hands-On (3): A Quantum Neuron

▪ Co-Design toward Quantum Advantage

• Challenges?

• Feedforward Neural Network

• Colab Hands-On (4): End-to-End Neural Network on MNIST

• Optimization for Quantum Neuron

• Colab Hands-On (5): QuantumFlow

• Results
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QuantumFlow Results

58 |  George Mason University

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.
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QuantumFlow Achieves Over 10X Cost Reduction

59 |  George Mason University
[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. arXiv preprint 

arXiv:1912.12486.
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QF-Nets Achieve the Best Accuracy on MNIST

60 |  George Mason University

Dataset
w/o BN w/ BN

binMLP(C) FFNN(Q) MLP(C) QF-pNet QF-hNet binMLP(C) FFNN(Q) MLP(C) QF-pNet QF-hNet

1,5 61.47% 61.47% 69.12% 69.12% 90.33% 55.99% 55.99% 85.30% 84.56% 96.60%

3,6 72.76% 72.76% 94.21% 91.67% 97.21% 72.76% 72.76% 96.29% 96.39% 97.66%

3,8 58.27% 58.27% 82.36% 82.36% 89.77% 58.37% 58.07% 86.74% 86.90% 87.20%

3,9 56.71% 56.51% 68.65% 68.30% 95.49% 56.91% 56.71% 80.63% 78.65% 95.59%

0,3,6 46.85% 51.63% 49.90% 59.87% 89.65% 50.68% 50.68% 75.37% 78.70% 90.40%

1,3,6 60.04% 59.97% 53.69% 53.69% 94.68% 59.59% 59.59% 86.76% 86.50% 92.30%

0,3,6,9 72.68% 72.33% 84.28% 87.36% 92.85% 69.95% 68.89% 82.89% 76.78% 93.63%

0,1,3,6,9 50.00% 51.10% 49.00% 43.24% 87.96% 60.96% 69.46% 70.19% 71.56% 92.62%

0,1,2,3,4 46.96% 50.01% 49.06% 52.95% 83.95% 64.51% 69.66% 71.82% 72.99% 90.27%

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. arXiv preprint 

arXiv:1912.12486.
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On Actual IBM “ibmq_essex”           Quantum Processor
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Hands-On Tutorial (5)
Comparison

https://github.com/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_5_QF-Map-Eval.ipynb
https://colab.research.google.com/github/JQub/QuantumFlow_Tutorial/blob/main/session_2/Tutorial_5_QF-Map-Eval.ipynb
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Outline
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▪ Background

▪ Co-Design: from Classical to Quantum

▪ QuantumFlow

▪ Motivation

▪ General Framework for Quantum-Based Neural Network Accelerator

▪ Co-Design toward Quantum Advantage

▪ Recent works and conclusion



Motivation and Challenges
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2019 2020 2021 2022 2023

Falcon

Eagle
Hummingbird

Osprey

Condor

deployed on

09/01/20

we are here today

Perf. of classical computing stops increasingDeep neural network grows exponentially Quantum computer grows exponentially

Fundamental questions:

• Can we implement Neural Network on Quantum Computers? 

• Can we achieve benefits in doing so?

Further questions:

• What is the best neural network architecture for quantum acceleration?

• What is the problem for near-term quantum computing, i.e., in NISQ era?
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On-Going Works in Building Quantum NN Co-Design Stack and Next
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Co-Design

Framework

Quantum

Flow

QF-Mixer
Network 

exploration

Current works: 
Quatnum NN Co-Design Stack

Exploration of Quantum Neural Architecture by Mixing Quantum

Neuron Designs

Z. Wang, Z. Liang, S. Zhou, C. Ding, J. Xiong, Y. Shi, W. Jiang,

Accepted by IEEE/ACM International Conference On Computer-

Aided Design (ICCAD), Virtual, 2021. (11/02/2021)

VQC QuantumFlow

• Linear classifier

• Cannot be extended to 

multiple nonlinear layers 

with low cost

Disadvantage

Advantage

• Real-valued weights • Binary weights

Disadvantage

Advantage

• Easy to be extended to 

multiple nonlinear layers 

w/t measurement

1+1 > 2

Mixing
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On-Going Works in Building Quantum NN Co-Design Stack and Next
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https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html

https://github.com/jqub/qfnn
QuantumFlow: An End-to-End Quantum Neural Network

Acceleration Framework

Zhirui Hu and W. Jiang

IEEE International Conference on Quantum Computing and

Engineering QCE 21 (QuantumWeek)

Co-Design

Framework

Quantum

Flow

QF-Mixer
Network 

exploration

Current works: 
Quatnum NN Co-Design Stack

QFNNProgramming 

library

https://libraries.io/pypi/qfnn
https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html
https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html
https://github.com/jqub/qfnn
https://github.com/jqub/qfnn
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On-Going Works in Building Quantum NN Co-Design Stack and Next
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QF-RobustNN
Place & 

Route

Co-Design

Framework

Quantum

Flow

QF-Mixer
Network 

exploration

Current works: 
Quatnum NN Co-Design Stack

QFNNProgramming 

library

Can Noise on Qubits Be Learned in Quantum Neural Network? A

Case Study on QuantumFlow

Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, W. Jiang,

Accepted by IEEE/ACM International Conference On Computer-Aided

Design (ICCAD), Virtual, 2021. (11/02/2021)

The first noise-aware training for Quantum Neural 
Networks
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Development of Co-Design Stack in Classical Computing

68 |  George Mason University

Co-Design

Framework

(e.g., Our

FNAS)
DNN FPGA 

(UCLA)

DNNBuilder

(UIUC)

NAS

(Google)

Network 

exploration

Programming 

library

Place & 

Route

     

         

         

    

         

          

 
 
 
  
 
 
  
 
 

               

           

        

          

                

          

           

                 

              

               

                

           

                       

                         

 
  
 
  
  
 

        

      

               

                 

                        

                              

                

              

                 

 
 
  
 
 
      

     

                

    

                   

                

                   

                     

            

Our works: 
Co-Design for Automation of Classical Neural Network Systems
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On-Going Works in Building Quantum NN Co-Design Stack and Next
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Co-Design

Framework

Quantum

Flow

QF-RobustNN

QFNN

QF-Mixer
Network 

exploration

Programming 

library

Place & 

Route

Our future works: 
Co-Design for Automation of Quantum Neural Network Systems

Current works: 
Quatnum NN Co-Design Stack

Co-Design

Framework

Quantum

Flow

A
p

p
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c

a
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o
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A
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o
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？
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Conclusion & Resources
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https://jqub.ece.gmu.edu (JQub Website)

https://jqub.ece.gmu.edu/categories/QF (News and slides)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://www.nature.com/articles/s41467-020-20729-5

https://arxiv.org/pdf/2012.10360.pdf

https://arxiv.org/pdf/2109.03806.pdf

https://arxiv.org/pdf/2109.03430.pdf

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI)

https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

• How to build up quantum circuit for neural networks from scratch

• Co-design can build a better quantum neural network accelerator

• Along with the development of quantum computers and quantum neural 

networks, we will see real-world applications in the NISQ Era

https://jqub.ece.gmu.edu/
https://jqub.ece.gmu.edu/categories/QF
https://jqub.ece.gmu.edu/categories/QF/qfnn/
https://www.nature.com/articles/s41467-020-20729-5
https://arxiv.org/pdf/2012.10360.pdf
https://arxiv.org/pdf/2109.03806.pdf
https://arxiv.org/pdf/2109.03430.pdf
https://github.com/JQub/QuantumFlow_Tutorial
https://github.com/JQub/qfnn
https://pypi.org/project/qfnn/
https://libraries.io/pypi/qfnn/
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