

QuantumFlow: Co-Design Neural Network and Quantum Circuit towards Quantum Advantage

Weiwen Jiang, Ph.D.

Assistant Professor

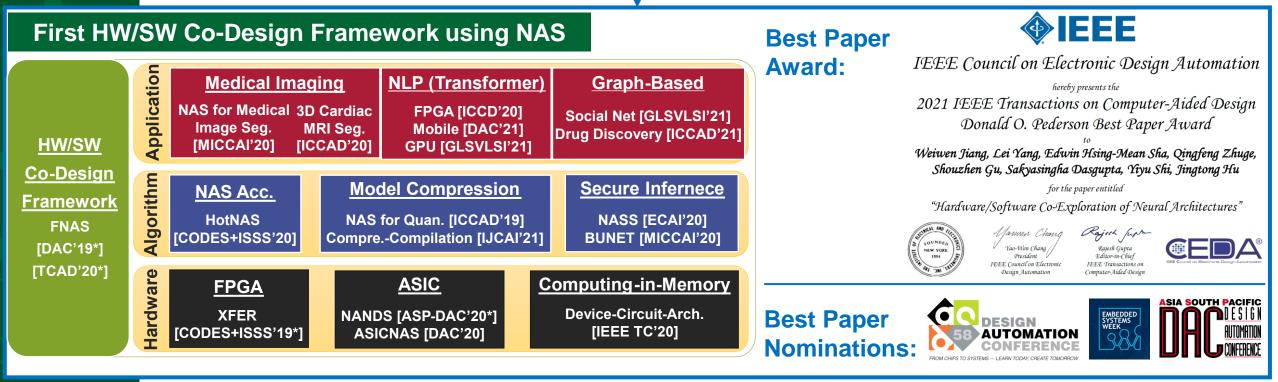
Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

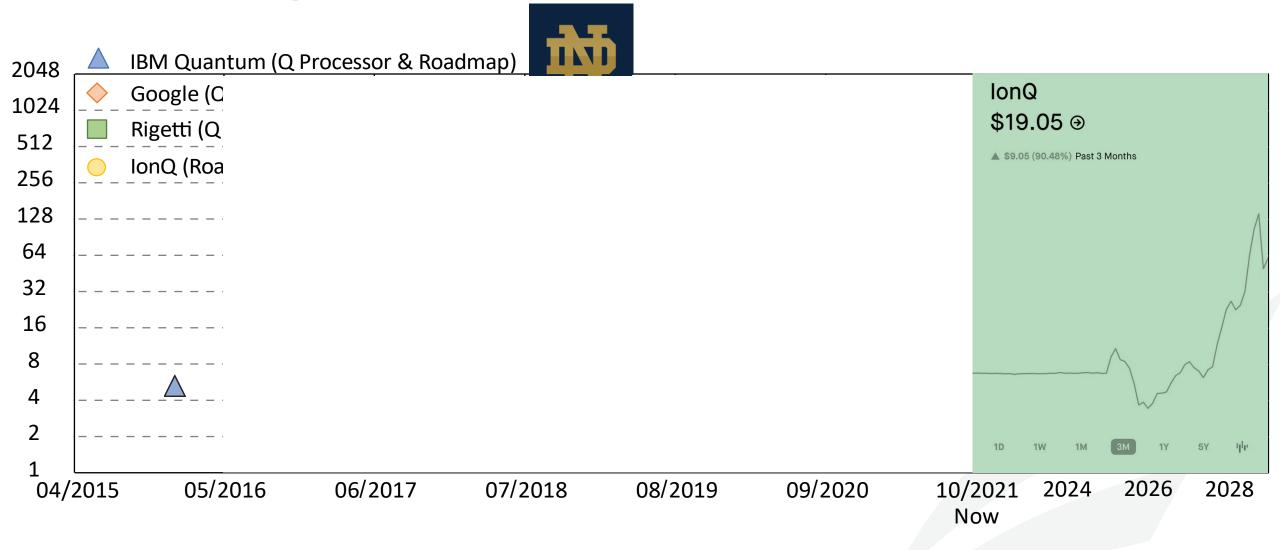
Speaker

Weiwen Jiang
Assistant Professor
Electrical and Computer Engineering (ECE)
George Mason University
Room3247, Nguyen Engineering Building
wjiang8@gmu.edu
(703)-993-5083
https://jqub.ece.gmu.edu/

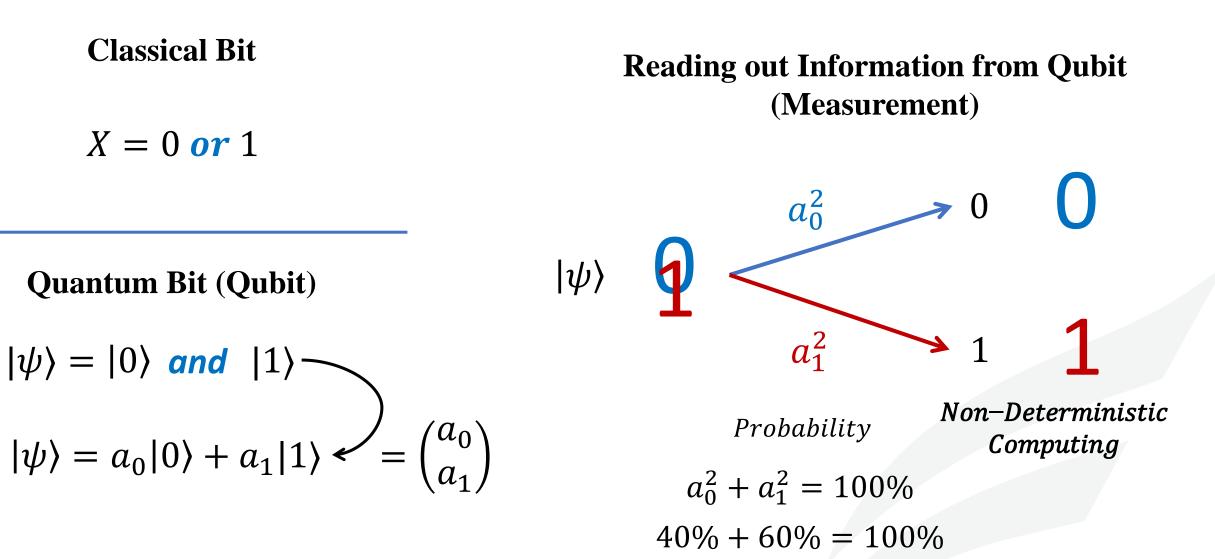
- Education Background
 - Chongqing University (2013-2019)
 - University of Pittsburgh (2017-2019)
 - University of Notre Dame (2019-2021)
- Research Interests
 - HW/SW Co-Design
 - Quantum Machine Learning



Quantum Computers Have Come to Our Life



The Power of Quantum Computers: Qubit



The Power of Quantum Computers: Qubits

2 Classical Bits 00 or 01 or 10 or 11n bits for 1 value $x \in [0, 2^n - 1]$

2 Qubits

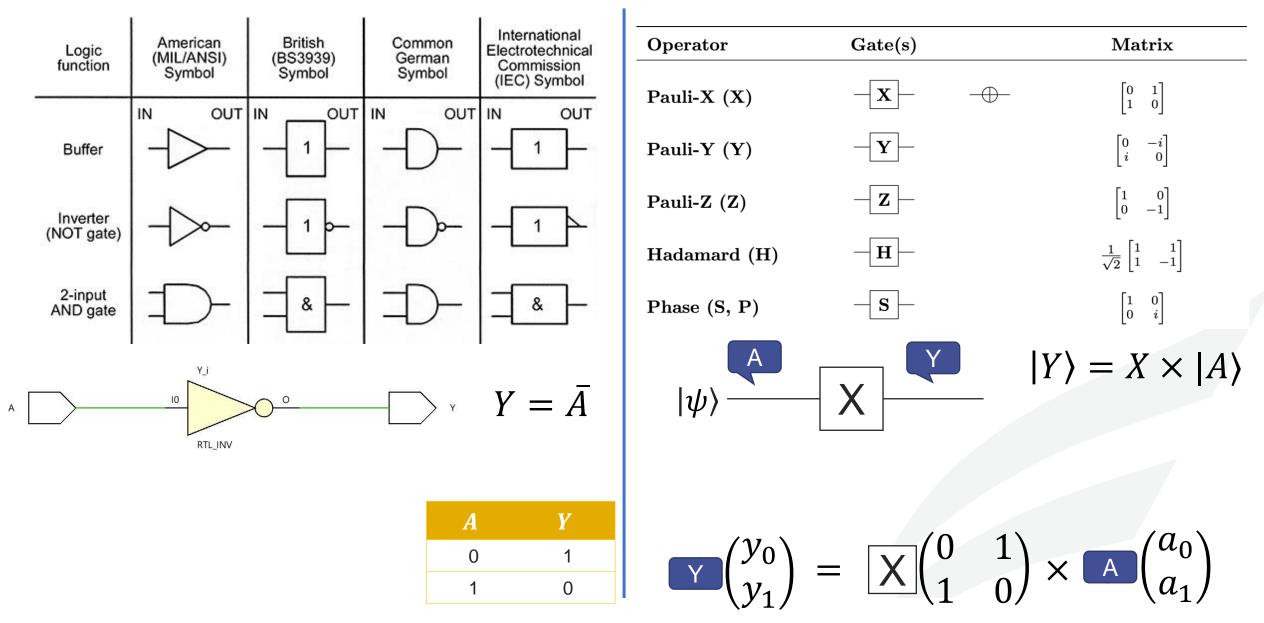
 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

n bits for 2^n values $a_0, a_1, a_2, \cdots a_n$ Qubits: q_0, q_1 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$ $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$ $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$ $= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

$$|q_{0},q_{1}\rangle = |q_{0}\rangle \otimes |q_{1}\rangle = \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} \otimes \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix}$$
$$= \begin{pmatrix} a_{0} \times \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} \\ a_{1} \times \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} = \begin{pmatrix} a_{0}b_{0} \\ a_{0}b_{1} \\ a_{1}b_{0} \\ a_{1}b_{1} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{pmatrix}$$

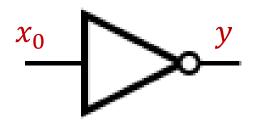
Dr. Weiwen Jiang, ECE, GMU

Computation: Logic Gates vs. Quantum Logic Gates

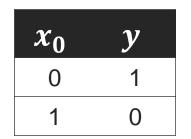


Single-Qubit Gates and Superposition

Single-bit Gate



Not Gate



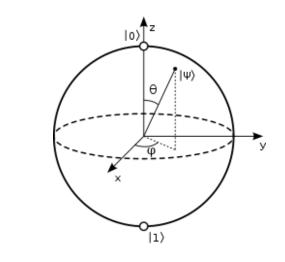
Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

$$|0\rangle - X - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

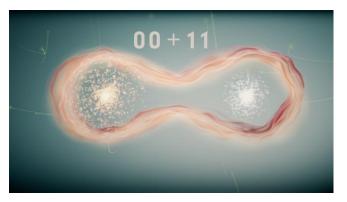
|0
angle
ightarrow |1
angle

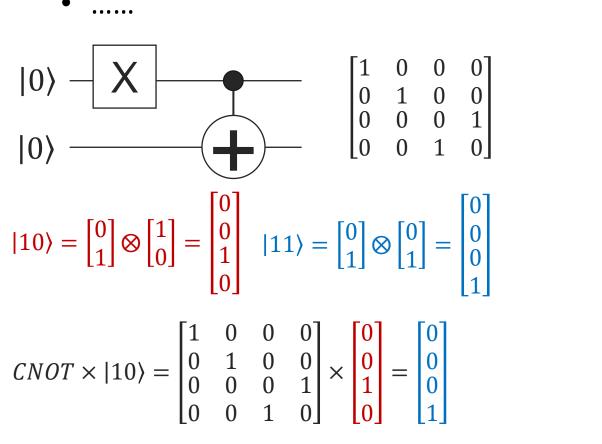


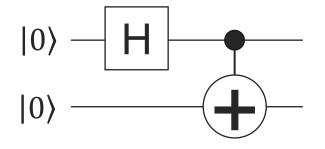
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Multi-Qubit Gates and Entanglement

- Multi-Qubit Gates
 - Controlled-Pauli gates
 - Toffoli gate or CCNOT







$$CNOT \times (H \otimes I) \times |00\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$
$$\times |00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{vmatrix} 00 \\ 01 \\ 10 \\ 11 \end{vmatrix}$$

8 | George Mason University

Hands-On Tutorial (1) Basic Quantum Gates

Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow
 - Motivation
 - General Framework for Quantum-Based Neural Network Accelerator
 - Co-Design toward Quantum Advantage
- Recent works and conclusion

Co-Design

Given:

- Dataset (e.g., ImageNet)
- ML Task (e.g., classification)
- HW (e.g., FPGA spec.)

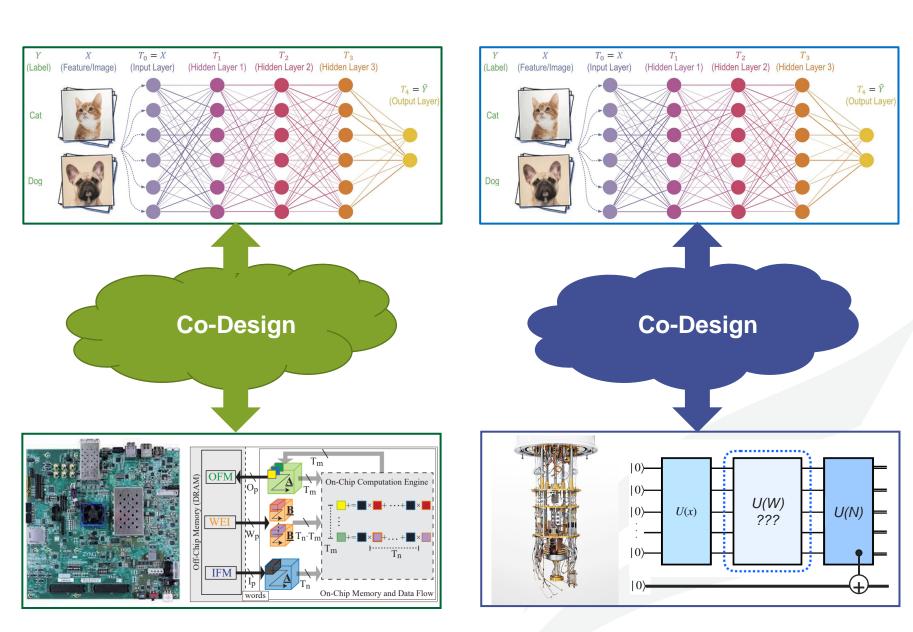
Do:

- Neural network design
- FPGA design

Objective:

- Accuracy
- Latency
- Energy

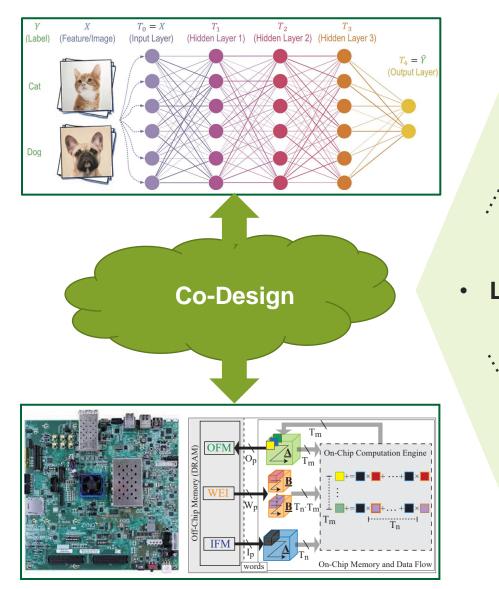
. . .



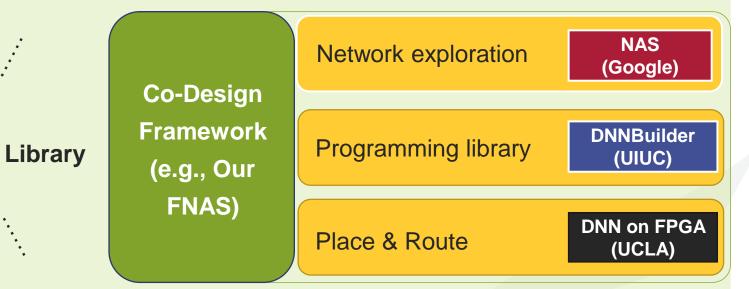
QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

My Previous Background: Co-Design of Neural "Architectures"

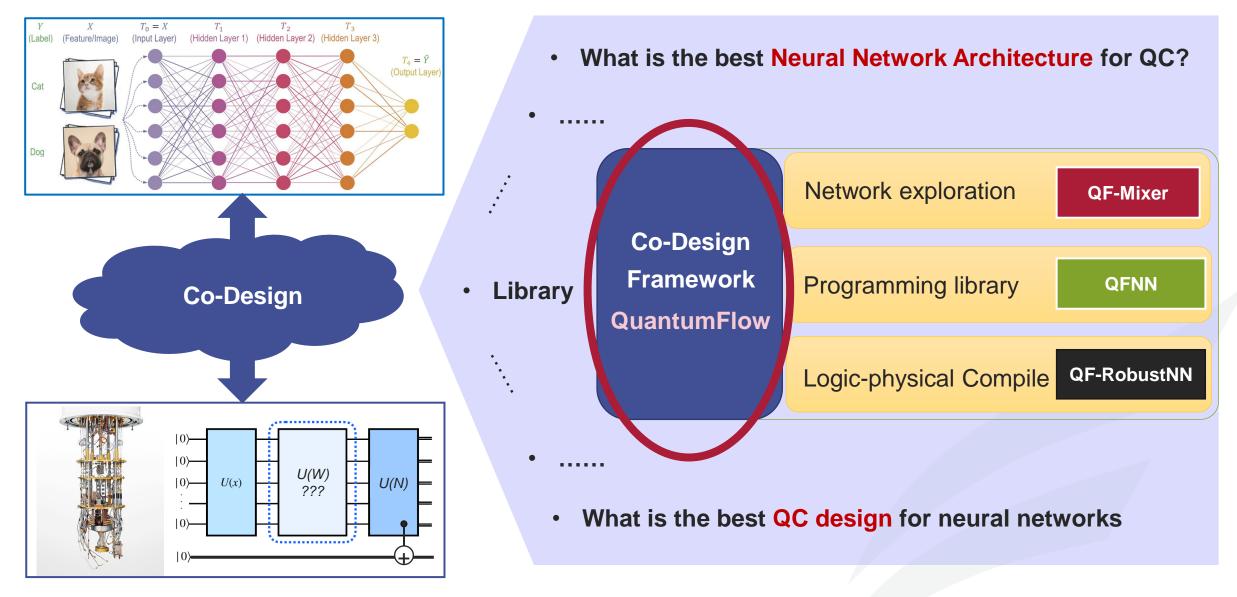


- What is the best Neural Network Architecture for FPGAs
- Model optimization (pruning and quantization)?



- Mapping and scheduling?
 - What is the best FPGA Architecture for neural networks

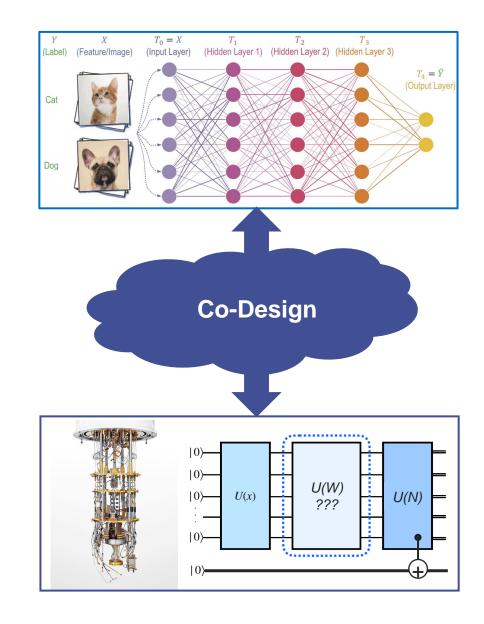
Current Works: Co-Design of Neural Networks and Quantum Circuit

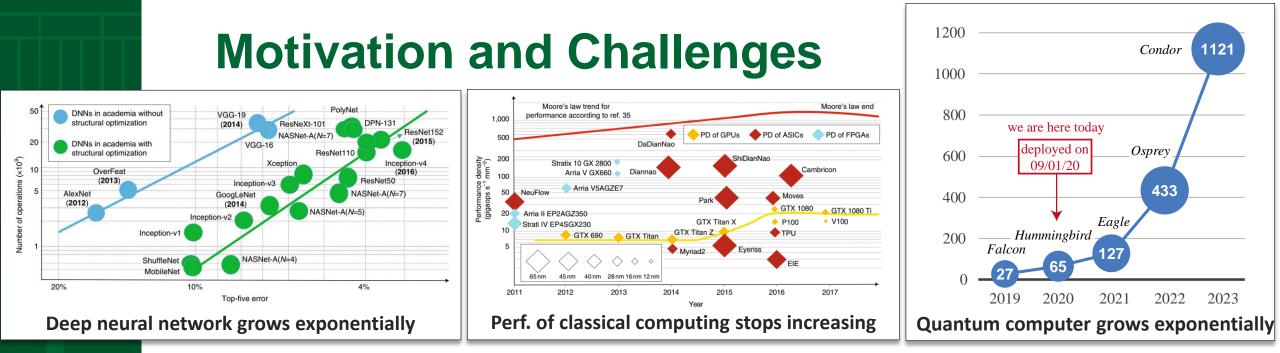


Co-Design of NN

Systems on

Quantum Computer





Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

Further questions:

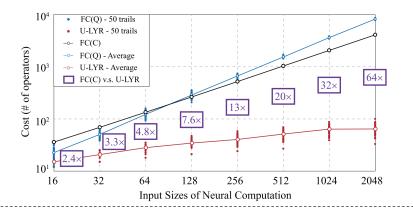
- What is the best neural network architecture for quantum acceleration?
- What is the problem for near-term quantum computing, i.e., in NISQ era?

Motivation and Challenges

Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

 $\frac{\partial}{\partial (N)} \rightarrow O(\log^3 N)$



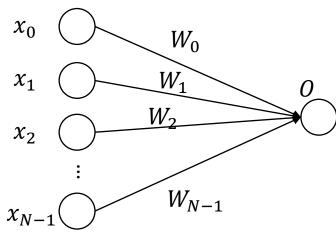
Paper Published at:

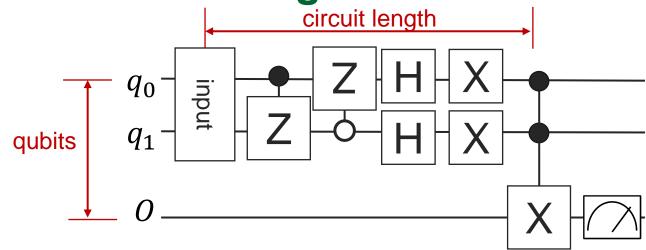
Invited Contribution and Tutorial Talks at:

IBM Quantum Summit September 15-17, 2020

IEEE International Conference on Quantum Computing and Engineering – QCE21

What's the complexity? Quantum Advantage?





- Classical computer with 1 MAC Time: O(N) Space (Comp. Res.): O(1) Time × Space: O(N)
- Classical computer with N MAC *Time*: 0(1) *Space (Comp. Res.)*: 0(N) *Time × Space*: 0(N)

- Time-Space Complexity in Quantum computer
 Time: Circuit Length
 Space (Comp. Res.): Qubits

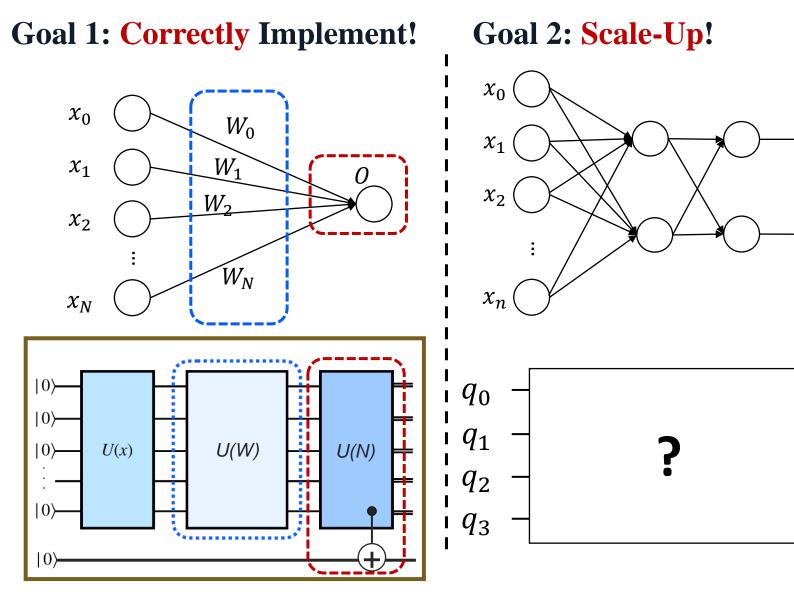
 Time × Space (T S): Qubits × Circuit Length
- Given that T S complexity on classical computer is O(N), Quantum Advantage is achieved if T – S complexity on Quantum can be O(ploylogN) or lower. ----- Exponential Speedup!

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

17 | George Mason University

What's the Goals?



Goal 3: Efficiently Implement!

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing: Can we reduce complexity to *O(ploylogN)*, say *O(log²N)*?

QuantumFlow @ Villanova University

Outline – QuantumFlow

Motivation

General Framework for Quantum-Based Neural Network Accelerator

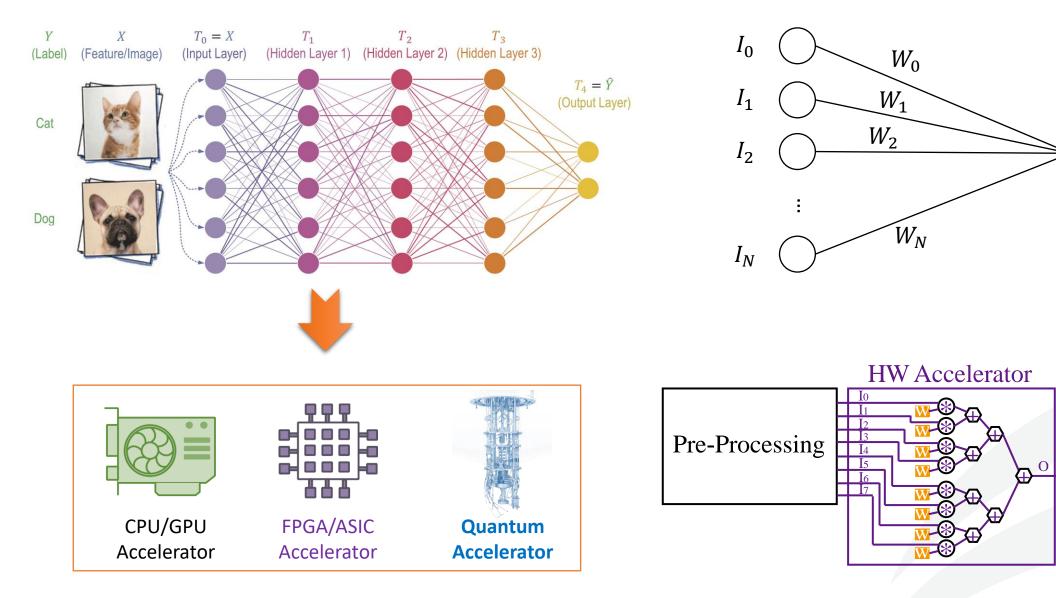
- Data Preparation and Encoding
- Colab Hands-On (2): From Classical Data to Quantum Data
- Quantum Circuit Design
- Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

QuantumFlow @ Villanova University

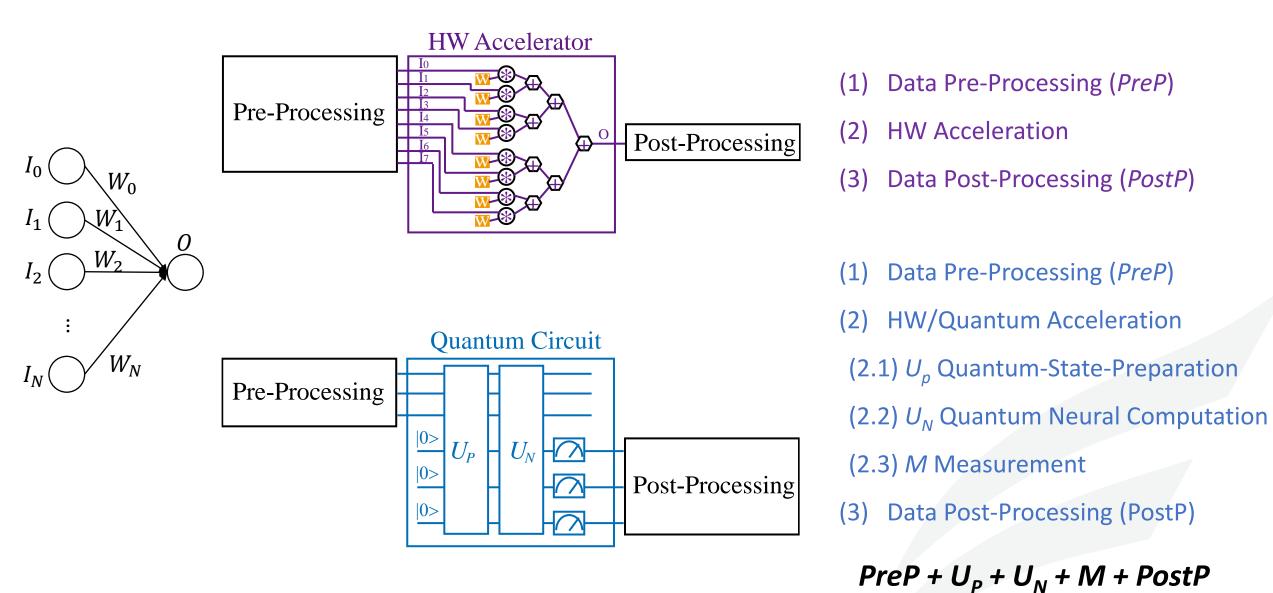
Neural Network Accelerator Design on Classical Hardware



0

Post-Processing

Neural Network Accelerator Design from Classical to Quantum Computing



Dr. Weiwen Jiang, ECE, GMU

21 | George Mason University

$PreP + U_P + U_N + M + PostP$: Data Pre-Processing

- Given: (1) 28×28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)
- **Do:** (1) downsampling from 28×28 to $2^Q = 16 = 4 \times 4$; (2) converting data to be the state vector in a unitary matrix
- **Output:** A unitary matrix, $M_{16 \times 16}$

Step 1: Downsampling	0.0039	0.2784	0.5961	0.0275 0.0667
From $28 imes 28$ to $4 imes 4$	0.0863	0.3176	0.5216	0.0588
	L0.1137	0.3608	0.1725	0.0039]

0.0039	0.2118	0.2941	0.0275]
0.0039	0.2784	0.5961 0.5216	0.0667
0.0863	0.3176	0.5216	0.0588
0.1137	0.3608	0.1725	0.0039

Step 2: Formulate Unitary Matrix

Applying SVD method (See Listing 1 in ASP-DAC SS Paper) Unitary matrix: $M_{16 \times 16}$

[SS] W. Jiang, et al. When Machine Learning Meets Quantum Computers: A Case Study, ASP-DAC'21

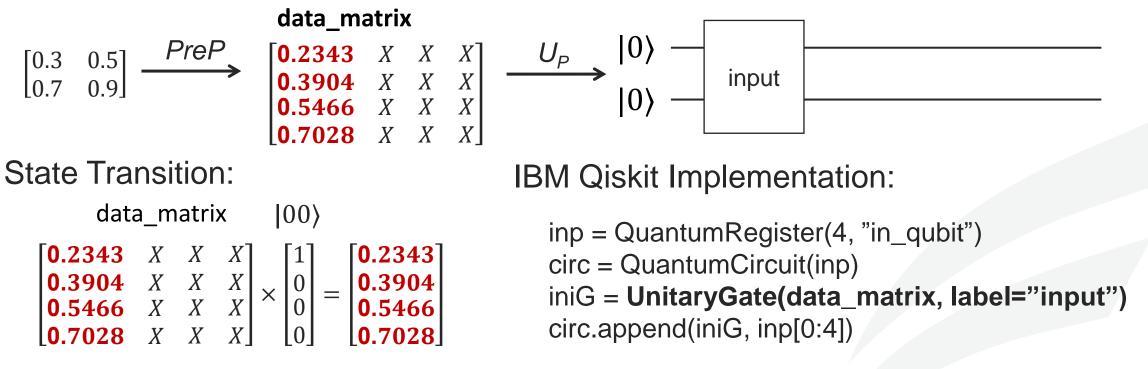
QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

$PreP + U_P + U_N + M + PostP --- Data Encoding / Quantum State Preparation$

- **Given:** The unitary matrix provided by *PreP*, $M_{16\times 16}$
- **Do:** Quantum-State-Preparation, encoding data to qubits
- Verification: Check the amplitude of states are consistent with the data in the unitary matrix, $M_{16\times16}$

Let's use a 2-qubit system as an example to encode a matrix $M_{4\times 4}$



Hands-On Tutorial (1) PreP + U_P

Outline – QuantumFlow

Motivation

General Framework for Quantum-Based Neural Network Accelerator

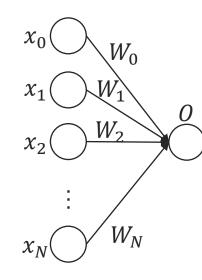
- Data Preparation and Encoding
- Colab Hands-On (2): From Classical Data to Quantum Data
- Quantum Circuit Design
- Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

QuantumFlow @ Villanova University

$PreP + U_P + U_N + M + PostP --- Neural Computation$



- **Given:** (1) A circuit with encoded input data *x*; (2) the trained binary weights *w* for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on the qubits, such that it performs $\frac{(x*w)^2}{\|x\|}$.
- Verification: Whether the output data of quantum circuit and the output computed using torch on classical computer are the same.

Target:
$$O = \left[\frac{\sum_{i}(x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$$

 Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1

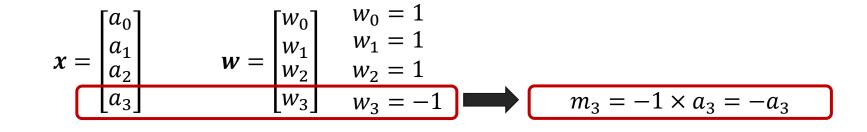
• Assumption 2: The weight
$$W_0 = +1$$
, otherwise we can use $-w$ (quadratic func.)
Step 2: $n = \left[\frac{\sum_i (m_i)}{\sqrt{\|x\|}}\right]$ Step 3: $O = n^2$

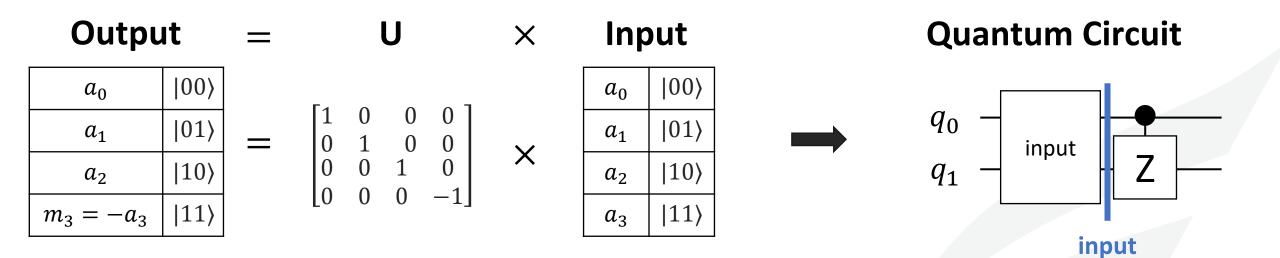
Step 1: $m_i = x_i \times w_i$

PreP + U_P + U_N + M + **PostP** --- Neural Computation: Step 1

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

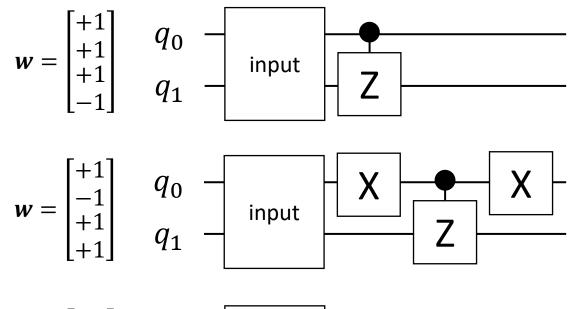


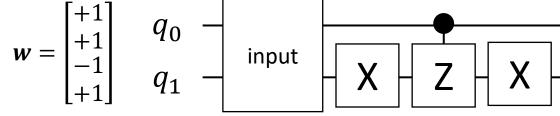


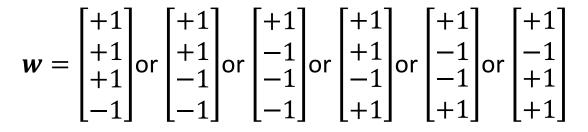
PreP + U_P + U_N + M + **PostP** --- Neural Computation: Step 1

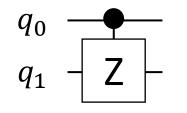
Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

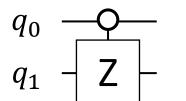




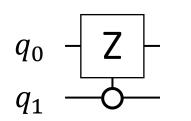




Flip the sign of $|11\rangle$



Flip the sign of $|01\rangle$



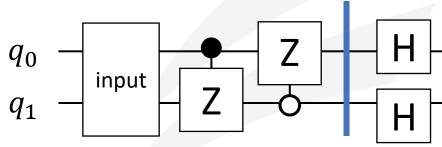
Flip the sign of $|10\rangle$

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

PreP + U_P + U_N + M + **PostP** --- Neural Computation: Step 2

Step 2: $n = \left[\frac{\sum_{i}(m_{i})}{\sqrt{\|\chi\|}}\right]$ EX: 4 input data on 2 qubits Output U Input Х 00 $\sum (m_i) / \sqrt{\|x\|}$ 00 m_0 |01> m_1 |01> Do not care 1 m_2 |10> |10> Do not care 2 |11> m_3 Do not care 3 $|11\rangle$ note: $||x|| = 2^N$ **Quantum Circuit**



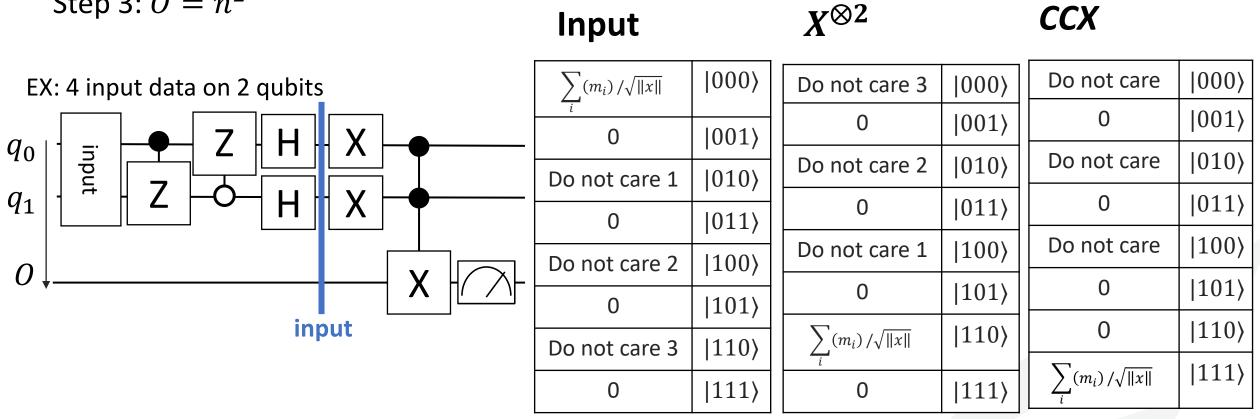
Dr. Weiwen Jiang, ECE, GMU

36 | George Mason University

input

$PreP + U_P + U_N + M + PostP$ -- Neural Computation (Step 3) & Measurement

Step 3: $0 = n^2$



Output

$$P\{O = |1\rangle\} = P\{|001\rangle\} + P\{|011\rangle\} + P\{|101\rangle\} + P\{|111\rangle\} = \left[\frac{\sum_{i}(m_{i})}{\sqrt{\|x\|}}\right]$$

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

Hands-On Tutorial (2) $PreP + U_P + U_N$

Outline – QuantumFlow

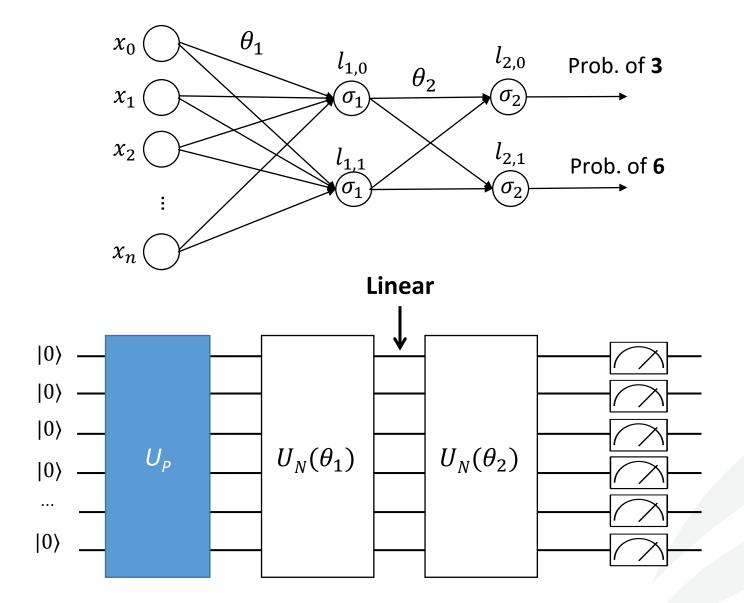
- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

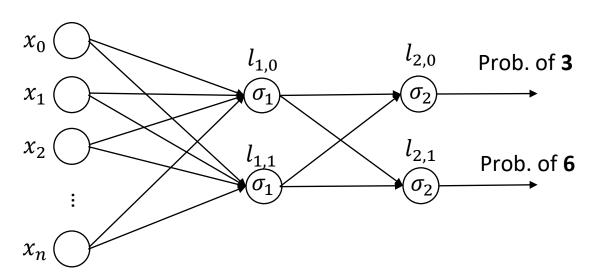
- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

QuantumFlow @ Villanova University

Challenge 1: Non-linearity is Needed, But Difficult in Quantum Circuit



Challenge 2: Quantum-Classical Interface is Expensive

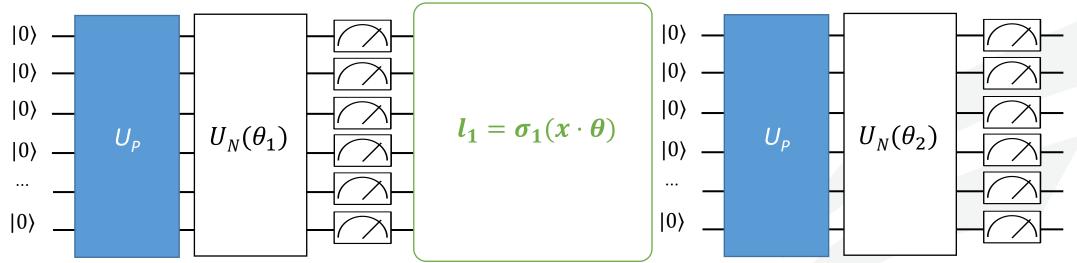


Ref [1]

Table 2 Complexity of each step in hybrid quantum-classicalcomputing for deep neural network with U-LYR.

Complexity	State-preparation	Computation	Measurement
Depth (T) Qubits (S) Cost (TS) Total (TS)	$O(d \cdot \sqrt{n})$ $O(n)$ $O(d \cdot n^{\frac{3}{2}})$ $O(d \cdot n^{\frac{3}{2}})$ dominate	$O(d \cdot \log^2 n)$ $O(n \cdot \log n)$ $O(d \cdot n \cdot \log^3 n)$	O(d) $O(n \cdot \log n)$ $O(d \cdot n \cdot \log n)$

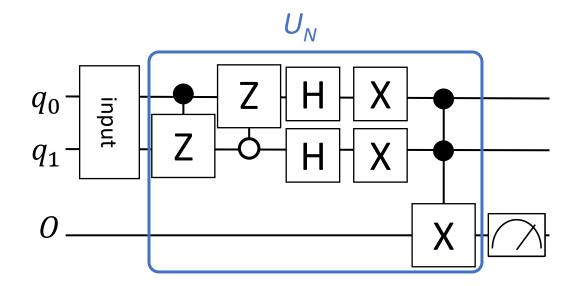
Quantum $\leftarrow \rightarrow$ Classical Computing $\leftarrow \rightarrow$ Quantum



[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Challenge 3: High Complexity in the Previous Design





Cost Complexity

Classical Computing			
	No Parallelism	Full Parallelism	
Time (T)	O(<i>N</i>)	O(1)	
Space (S)	O(1)	O(<i>N</i>)	
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)	

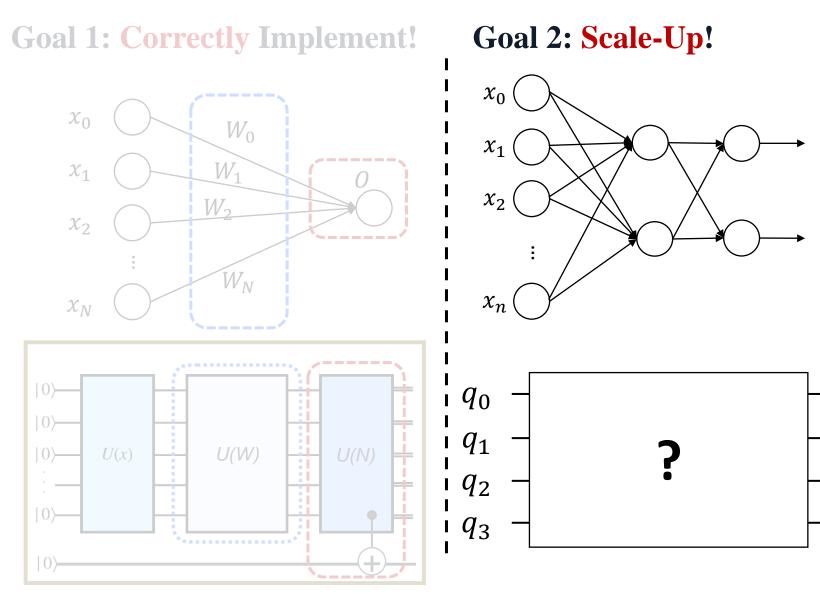
	Quantum Computing		
	Previous Design	Optimization	
Circuit Depth (T)	O(<i>N</i>)	???	
Qubits (S)	O(log N)	$O(\log N)$	
Cost (TS)	$O(N \cdot \log N)$	target O(ploylog N)	

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

42 | George Mason University

What's the Goals?



Goal 3: Efficiently Implement!

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing: Can we reduce complexity to *O(ploylogN)*, say *O(log²n)*?

QuantumFlow @ Villanova University

Outline – QuantumFlow

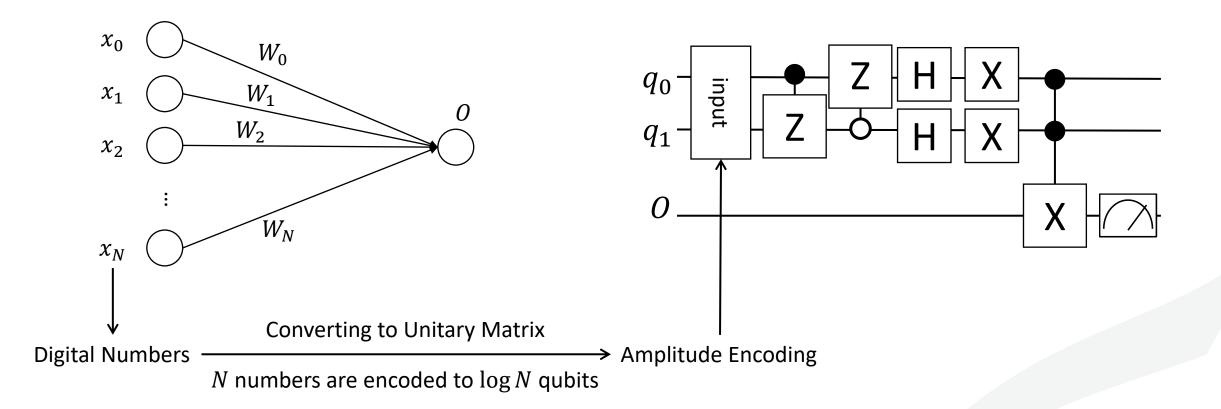
- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

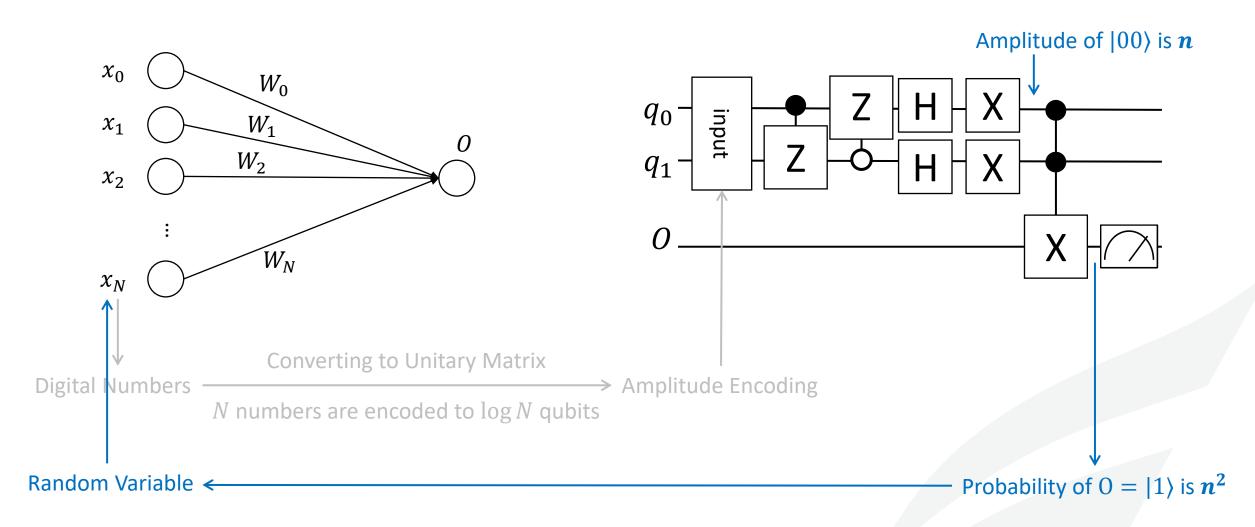
- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

QuantumFlow @ Villanova University

Design Direction 1: NN → **Quantum Circuit**

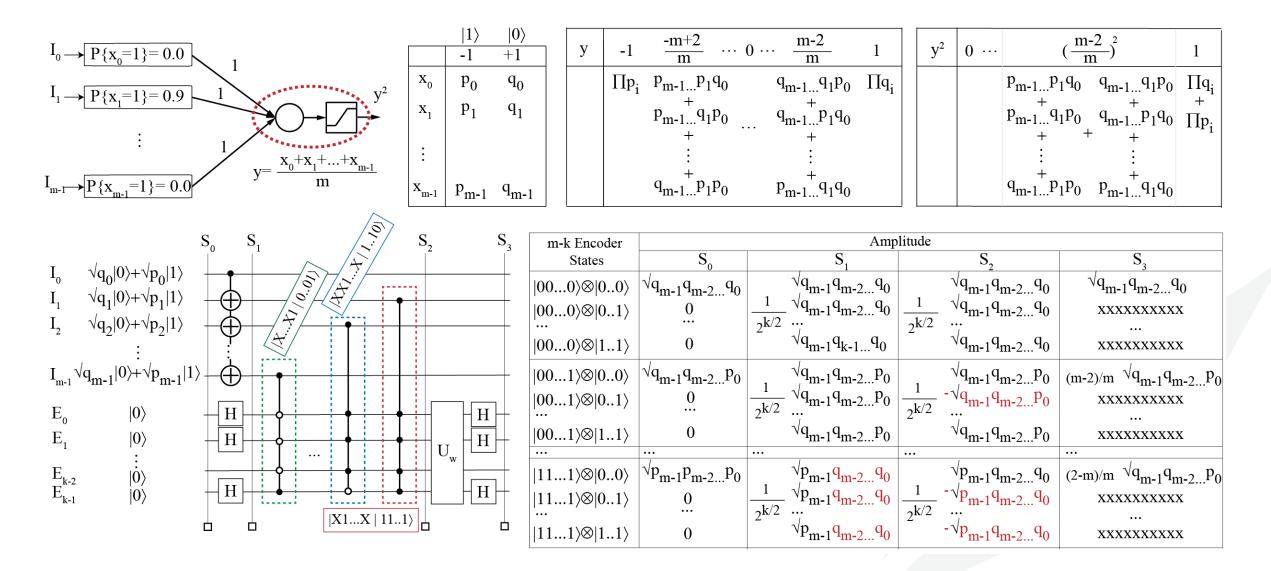


Design Direction 2: Quantum Circuit → **NN**

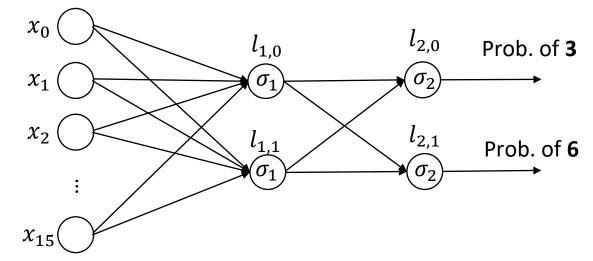


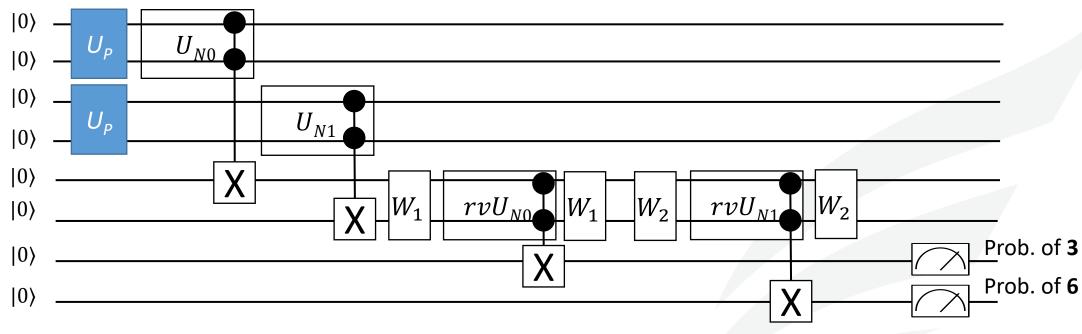
QuantumFlow @ Villanova University

rvU_N --- Neural Computation



Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!





QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

49 | George Mason University

Hands-On Tutorial (3) *PreP+ U_P+ U_N+ M+ PostP* (MNIST)



Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

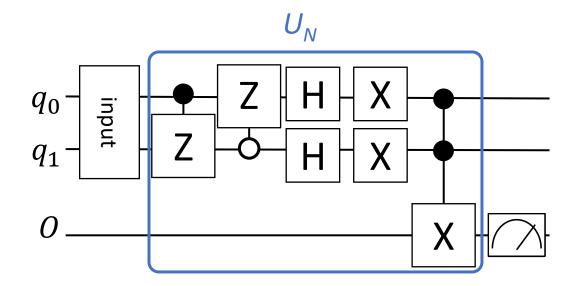
Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

QuantumFlow @ Villanova University

Challenge 3: High Complexity in the Previous Design





Cost Complexity

Classical Computing								
No Parallelism Full Parallelism								
Time (T)	O(<i>N</i>)	O(1)						
Space (S)	O(1)	O(<i>N</i>)						
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)						

	Quantum Computing							
	Previous Design Optimization							
Circuit Depth (T)	O(<i>N</i>)	???						
Qubits (S)	O(log N)	$O(\log N)$						
Cost (TS)	$O(N \cdot \log N)$	target O(ploylog N)						

QuantumFlow @ Villanova University

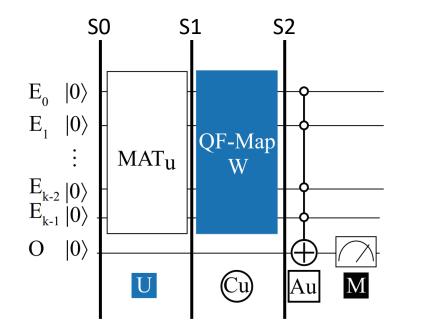
Dr. Weiwen Jiang, ECE, GMU

52 | George Mason University

U

QuantumFlow: Taking NN Property to Design QC

 $[0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$



$$(v_o; v_{x1}; v_{x2}; ...; v_{xn}) \times \begin{pmatrix} 1\\ 0\\ ...\\ 0 \end{pmatrix} = (v_0)$$

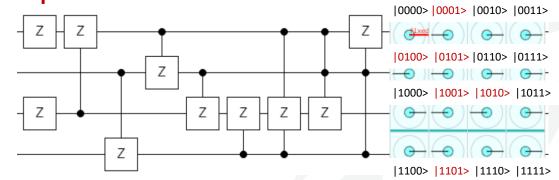
 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

S1 -> **S2**:

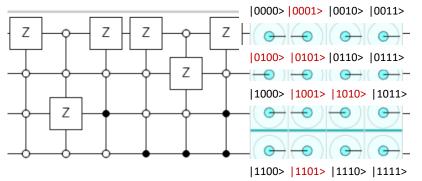
SO -> S1:

 $W = [+1, -1, +1, +1, -1, -1, +1, +1, +1, -1, -1, +1, +1, -1, +1]^{T}$ |0000> |0001> |0010> |0011> |0100> |0111> |0110> |0111> |1000> |1011> |1010> |1011> |1100> |1111> |1100> |1111> $S2 = [0, -0.59, 0, 0, -0, -0.07, 0, 0, 0, -0.66, -0.33, 0.33, 0, -0, 0, 0]^{T}$

Implementation 2:

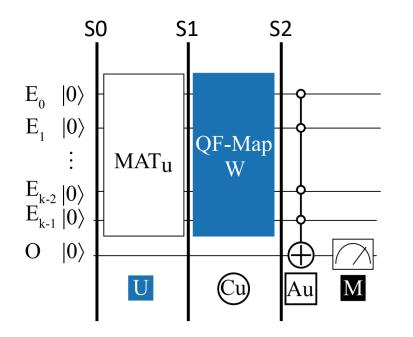


Implementation 1 (example in Quirk):



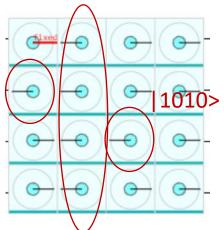
[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

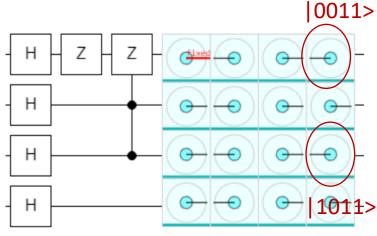
QuantumFlow: Taking NN Property to Design QC



Property from NN

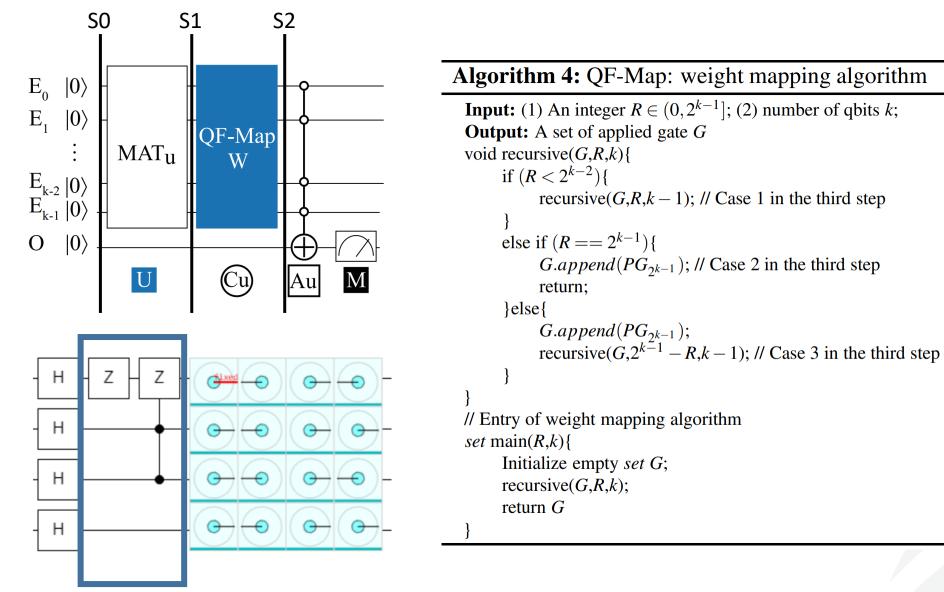
- The **weight order** is not necessary to be fixed, which can be adjusted if the order of inputs are adjusted accordingly
- Benefit: No need to require the positions of sign flip are exactly the same with the weights; instead, only need the number of signs are the same.





 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0]^{T}$ ori + - + + fin - + + - $S1' = [0, 0.59, 0, 0.33, 0.33, 0.07, 0, 0, 0.66, 0, 0, 0, 0, 0, 0]^{T}$

QuantumFlow: Taking NN Property to Design QC

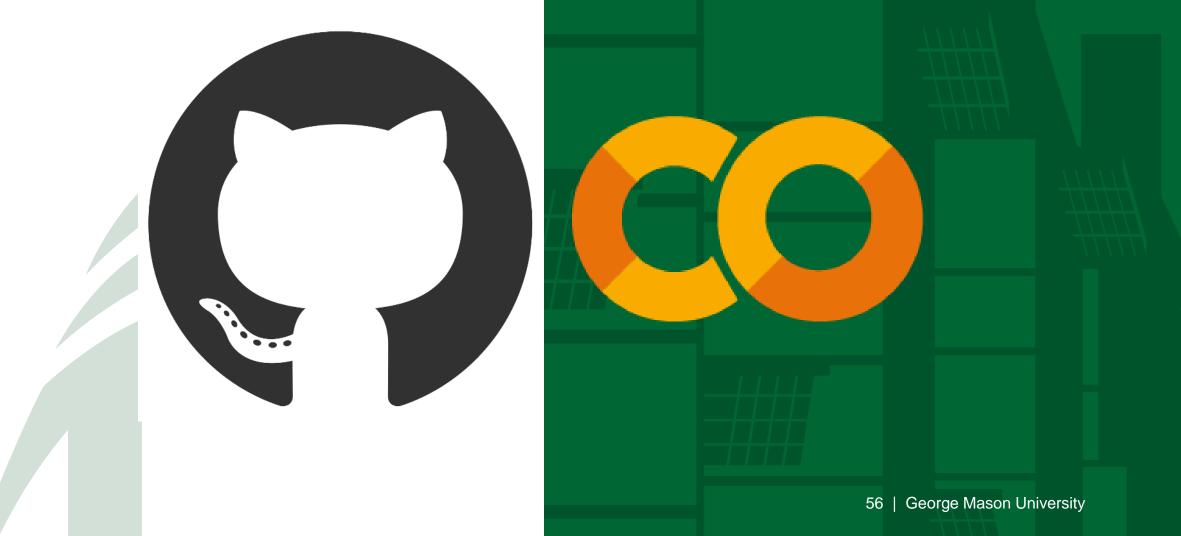


Used gates and Costs

Gates	Cost
Z	1
CZ	1
C ² Z	3
C ³ Z	5
C ⁴ Z	6
•••	
C ^k Z	2k-1

Worst case: all gates

Hands-On Tutorial (4) *PreP* + U_p+ Optimized U_N+ M+PostP (MNIST)



Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

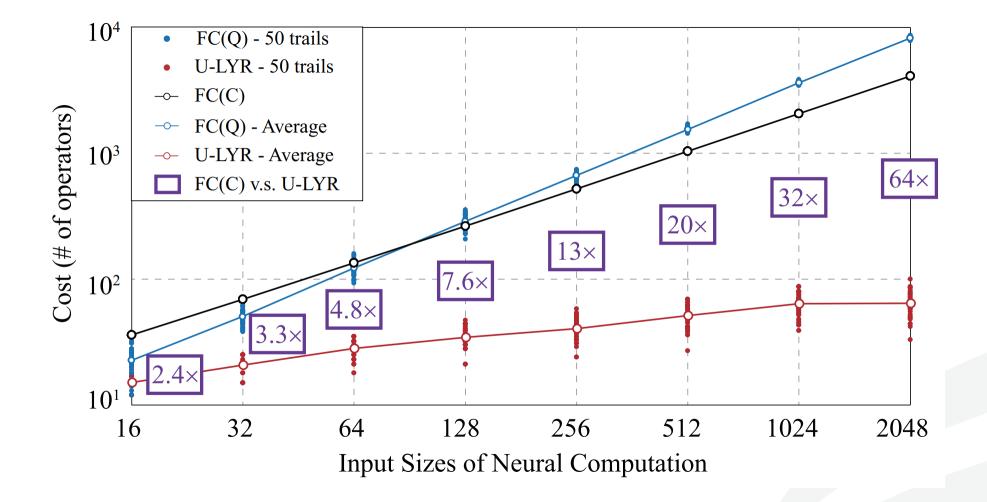
- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow

Results

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

QuantumFlow Results



[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. *npj Quantum Information*, 5(1), pp.1-8.

Dr. Weiwen Jiang, ECE, GMU

QuantumFlow Achieves Over 10X Cost Reduction

	Str	Structure		MLP(C)		FFNN(Q)			QF-hNet(Q)					
Dataset	In	L1	L2	L1	L2	Tot.	L1	L2	Tot.	Red.	L1	L2	Tot.	Red.
{1,5}	16	4	2				80	38	118	1.27 ×	74	38	112	1.34 ×
{3,6}	16	4	2	100	10	150	96	38	134	1.12 ×	58	38	96	1.56 ×
{3,8}	16	4	2	132	18	150	76	34	110	1.36 ×	58	34	92	1.63 ×
{3,9}	16	4	2				98	42	140	1.07 ×	68	42	110	1.36 ×
{0,3,6}	16	8	3	261	51	315	173	175	348	0.91 ×	106	175	281	1.12 ×
{1,3,6}	16	8	3	204	31	515	209	161	370	0.85 ×	139	161	300	1.05 imes
{0,3,6,9}	64	16	4	2064	132	2196	1893	572	2465	0.89 ×	434	572	1006	2.18 ×
{0,1,3,6,9}	64	16	5	2064	165	2229	1809	645	2454	0.91 ×	437	645	1082	2.06 ×
$\{0,1,2,3,4\}$	64	16	5	2004	103	103 2229	1677	669	2346	0.95 ×	445	669	1114	2.00 ×
{0,1,3,6,9}*	256	8	5	4104	85	4189	5030	251	5281	0.79 ×	135	251	386	10.85×

*: Model with 16×16 resolution input for dataset {0,1,3,6,9} to test scalability, whose accuracy is 94.09%, which is higher than 8×8 input with accuracy of 92.62%.

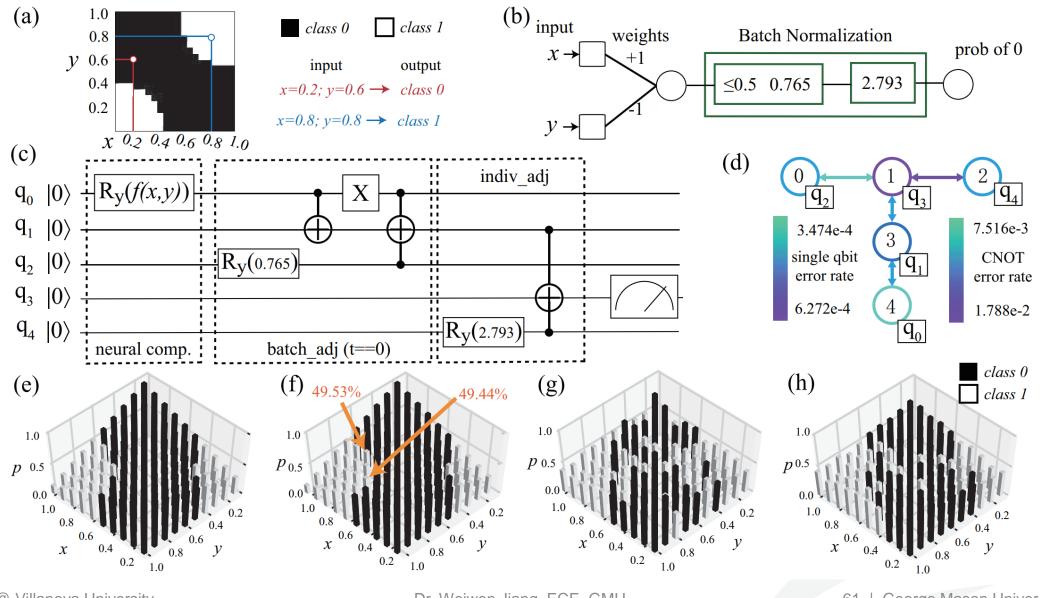
[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. *arXiv preprint arXiv:1912.12486*.

QF-Nets Achieve the Best Accuracy on MNIST

			w/o BN		w/BN					
Dataset	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet
1,5	61.47%	61.47%	69.12%	69.12%	90.33%	55.99%	55.99%	85.30%	84.56%	96.60%
3,6	72.76%	72.76%	94.21%	91.67%	97.21%	72.76%	72.76%	96.29%	96.39%	97.66%
3,8	58.27%	58.27%	82.36%	82.36%	89.77%	58.37%	58.07%	86.74%	86.90%	87.20%
3,9	56.71%	56.51%	68.65%	68.30%	95.49%	56.91%	56.71%	80.63%	78.65%	95.59%
0,3,6	46.85%	51.63%	49.90%	59.87%	89.65%	50.68%	50.68%	75.37%	78.70%	90.40%
1,3,6	60.04%	59.97%	53.69%	53.69%	94.68%	59.59%	59.59%	86.76%	86.50%	92.30%
0,3,6,9	72.68%	72.33%	84.28%	87.36%	92.85%	69.95%	68.89%	82.89%	76.78%	93.63%
0,1,3,6,9	50.00%	51.10%	49.00%	43.24%	87.96%	60.96%	69.46%	70.19%	71.56%	92.62%
0,1,2,3,4	46.96%	50.01%	49.06%	52.95%	83.95%	64.51%	69.66%	71.82%	72.99%	90.27%

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. *arXiv preprint arXiv:1912.12486*.

On Actual IBM "ibmq_essex" (retired) Quantum Processor



QuantumFlow @ Villanova University

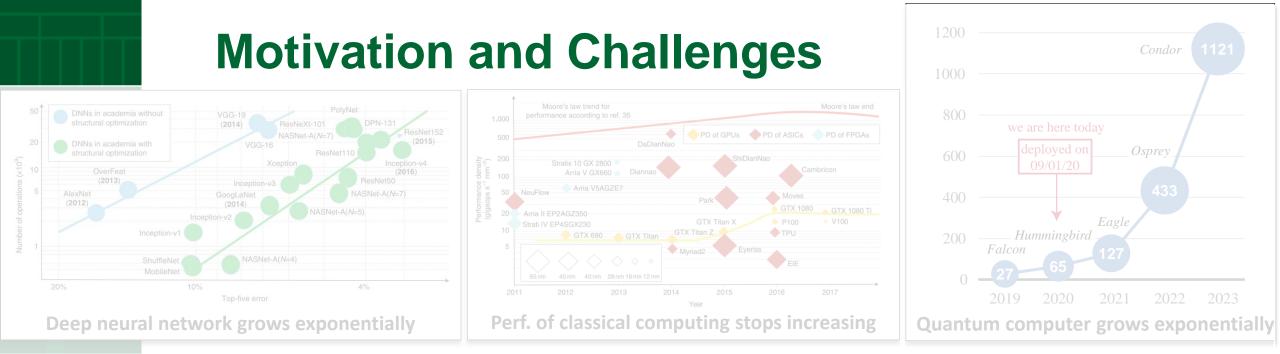
Dr. Weiwen Jiang, ECE, GMU

61 | George Mason University

Hands-On Tutorial (5) Comparison

Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow
 - Motivation
 - General Framework for Quantum-Based Neural Network Accelerator
 - Co-Design toward Quantum Advantage
- Recent works and conclusion



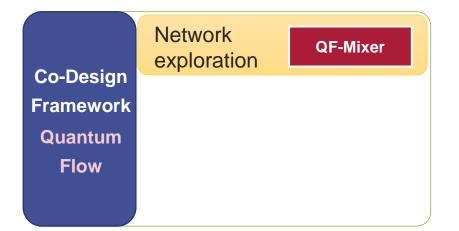
Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

Further questions:

- What is the best neural network architecture for quantum acceleration?
- What is the problem for near-term quantum computing, i.e., in NISQ era?

Current works: Quatnum NN Co-Design Stack



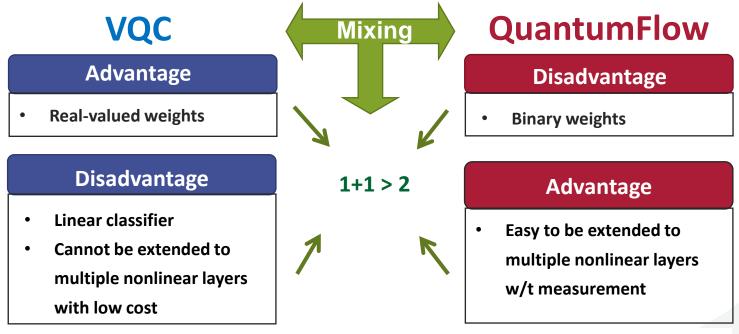


TABLE I EVALUATION OF QNNS WITH DIFFERENT NEURAL ARCHITECTURE

Architecture		MNIST-2 [†]	MNIST-3 [†]	MNIST-4 [‡]	MNIST-5 [‡]	MNIST [§]	
VQC (V×R1)		97.91%	90.09%	93.45%	91.35%	52.77%	
QuantumFlow		95.63%	91.42%	94.26%	89.53%	69.92%	
	V+U	97.36%	92.77%	94.41%	93.85%	88.46%	
QF-MixNN	V+U+P	87.45%	82.9%	92.44%	91.56%	90.62%	
	V+P	91.72%	76.93%	88.43%	85.02%	49.57%	
Input resolutions: † 4 × 4: ‡ 8 × 8: $^{\$}$ 16 × 16:							

Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

Z. Wang, Z. Liang, S. Zhou, C. Ding, J. Xiong, Y. Shi, W. Jiang, Accepted by IEEE/ACM International Conference On Computer-Aided Design (ICCAD), Virtual, 2021. (11/02/2021)

QuantumFlow @ Villanova University

Current works: Qiskit 🕂 🗘 PyTorch 🕂 **Quatnum NN Co-Design Stack** Index Network **QF-Mixer** exploration QFNN 0.1.17 documentation » QuantumFlow Neural Network (QFNN) API. **Co-Design** QuantumFlow Neural Network (QFNN) API. Table of Contents Framework Programming QFNN QuantumFlow Neural Network (QFNN) API. Indices and tables library Quantum Indices and tables This Page Flow Index Show Source Module Index Search Page **Ouick search** Go

https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html

66

QuantumFlow: An End-to-End Quantum Neural Network Acceleration Framework

Zhirui Hu and W. Jiang

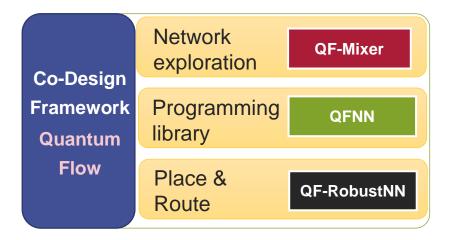
IEEE International Conference on Quantum Computing and Engineering QCE 21 (**QuantumWeek**)

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

George Mason University

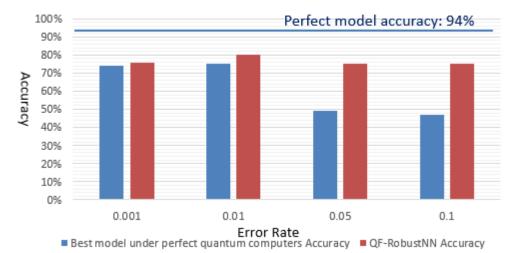
Current works: Quatnum NN Co-Design Stack



Networks Trained Weights Converged Not converged Logical Q Circuits Terminate (2) Application-Specific Mapping **OF-RobustNN** Physical Q Circuits Inference with Error-Aware on Ouantum Computer 1) Train QNN to learn or Quantum Simulator 🔸 Error Info Model Accuracy

The first noise-aware training for Quantum Neural

Acurracy Result from Different Noise Model



Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow

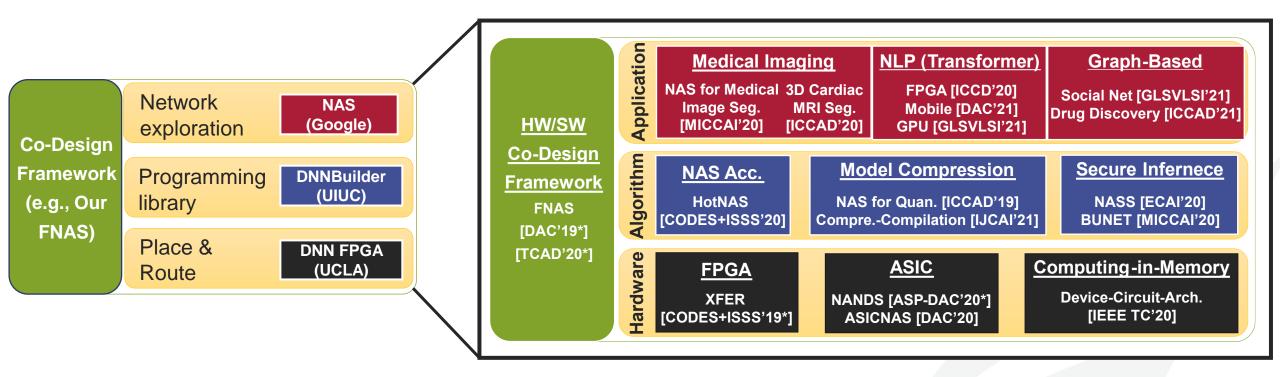
Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, **W. Jiang**, Accepted by IEEE/ACM International Conference On Computer-Aided Design (ICCAD), Virtual, 2021. (11/02/2021)

QuantumFlow @ Villanova University

Dr. Weiwen Jiang, ECE, GMU

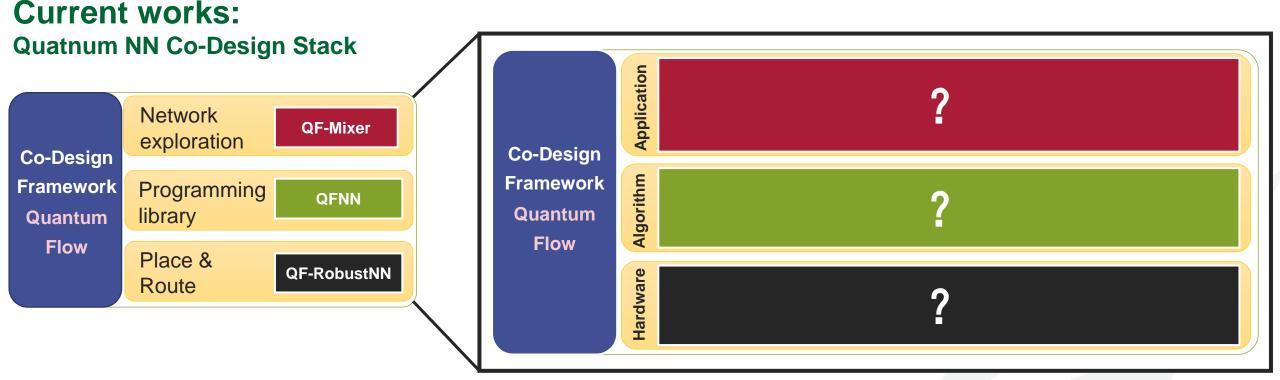
Development of Co-Design Stack in Classical Computing

Our works: Co-Design for Automation of Classical Neural Network Systems



Our future works:

Co-Design for Automation of Quantum Neural Network Systems



Conclusion & Resources

- How to build up quantum circuit for neural networks from scratch
- Co-design can build a better quantum neural network accelerator
- Along with the development of quantum computers and quantum neural networks, we will see real-world applications in the NISQ Era

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial) https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI) https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

<u>https://jqub.ece.gmu.edu</u> (JQub Website) <u>https://jqub.ece.gmu.edu/categories/QF</u> (News and **slides**)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://www.nature.com/articles/s41467-020-20729-5

https://arxiv.org/pdf/2012.10360.pdf https://arxiv.org/pdf/2109.03806.pdf https://arxiv.org/pdf/2109.03430.pdf

Dr. Weiwen Jiang, ECE, GMU

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030 Tel: (703)993-1000