

QuantumFlow: Co-Design Neural Network and Quantum Circuit towards Quantum Advantage

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

Speaker

Weiwen Jiang **Assistant Professor** Electrical and Computer Engineering (ECE) George Mason University Room3247, Nguyen Engineering Building wjiang8@gmu.edu (703)-993-5083 https://jqub.ece.gmu.edu/

- Education Background
 - Chongging University (2013-2019)
 - **University of Pittsburgh (2017-2019)**
 - **University of Notre Dame (2019-2021)**
- Research Interests
 - **HW/SW Co-Design**
 - **Quantum Machine Learning**

First HW/SW Co-Design Framework using NAS

Application HW/SW Algorithm

Hardware

Co-Design **Framework FNAS** [DAC'19*] [TCAD'20*]

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seg. [MICCAI'20] **IICCAD'201**

NAS Acc.

HotNAS

[CODES+ISSS'20]

FPGA

XFER

[CODES+ISSS'19*]

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] **GPU [GLSVLSI'21]**

Graph-Based

Social Net [GLSVLSI'21] Drug Discovery [ICCAD'21]

Model Compression

NAS for Quan. [ICCAD'19] Compre.-Compilation [IJCAI'21]

ASIC

NANDS [ASP-DAC'20*]

ASICNAS [DAC'20]

Secure Infernece

NASS [ECAl'20] **BUNET [MICCAI'20]**

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

Best Paper Award:

IEEE Council on Electronic Design Automation

hereby presents the

2021 IEEE Transactions on Computer-Aided Design Donald O. Pederson Best Paper Award

Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, Jingtong Hu

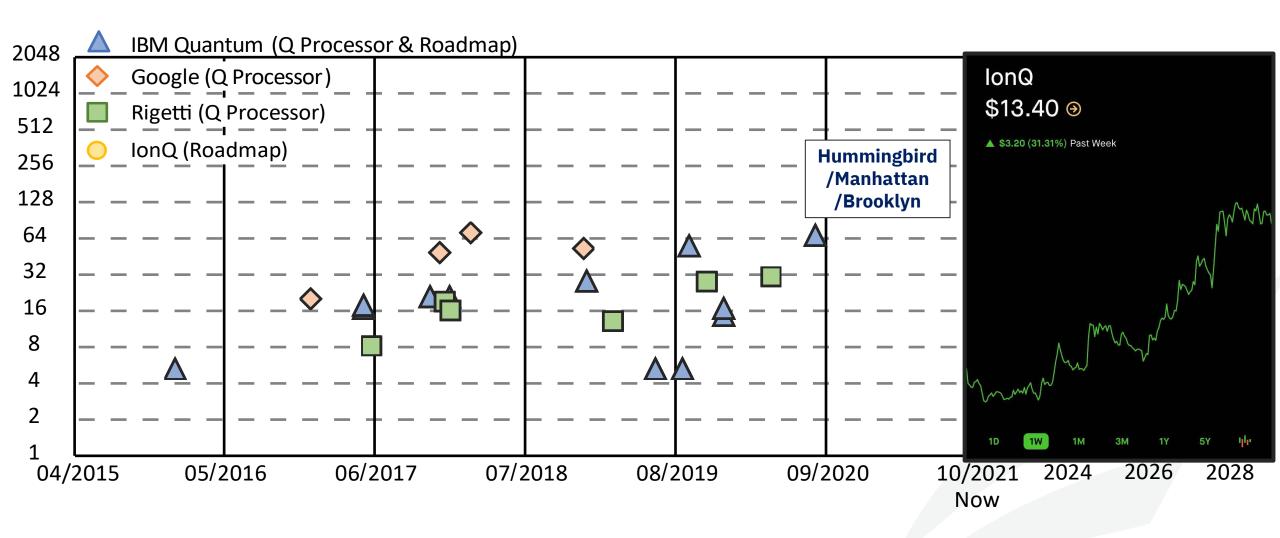
for the paper entitled

"Hardware/Software Co-Exploration of Neural Architectures"

Maswen Chang

Best Paper Nominations:

Consistently Increasing Qubits in Quantum Computers



The Power of Quantum Computers: Qubit

Classical Bit

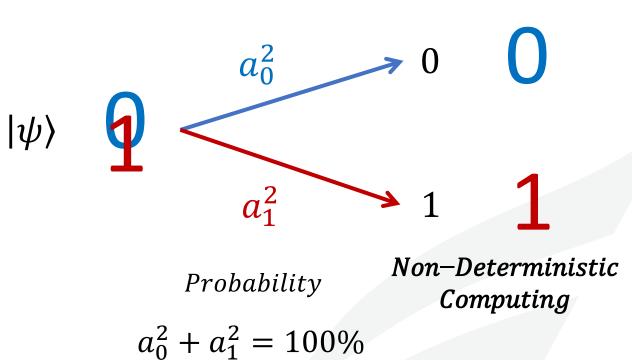
$$X = 0 \ or \ 1$$

Quantum Bit (Qubit)

$$|\psi\rangle = |0\rangle \text{ and } |1\rangle$$

$$|\psi\rangle = a_0|0\rangle + a_1|1\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$
s. t. $a_0^2 + a_1^2 = 100\%$

Reading out Information from Qubit (Measurement)



40% + 60% = 100%

The Power of Quantum Computers: Qubits

2 Classical Bits

00 or 01 or 10 or 11

n bits for 1 value $x \in [0, 2^n - 1]$

2 Qubits

 $c_{00}|00\rangle$ and $c_{01}|01\rangle$ and $c_{10}|10\rangle$ and $c_{11}|11\rangle$

n bits for 2^n values $a_{00}, a_{01}, a_{10}, a_{11}$

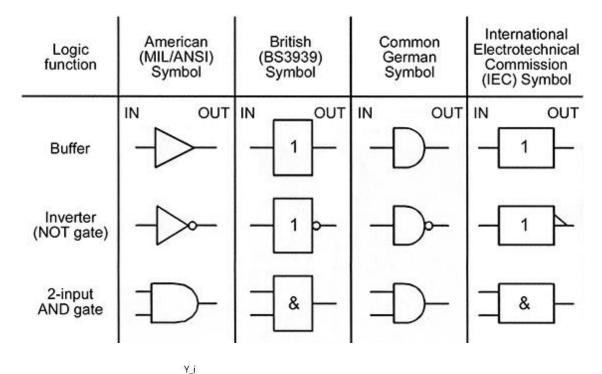
Qubits:
$$q_0, q_1$$

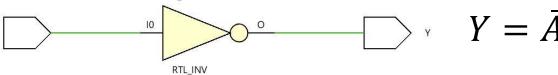
 $|q_0\rangle = a_0|0\rangle + a_1|1\rangle$
 $|q_1\rangle = b_0|0\rangle + b_1|1\rangle$
 $|q_0, q_1\rangle = |q_0\rangle \otimes |q_1\rangle$
 $= c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

$$|q_0,q_1\rangle=|q_0\rangle\otimes|q_1\rangle={a_0\choose a_1}\otimes{b_0\choose b_1}$$

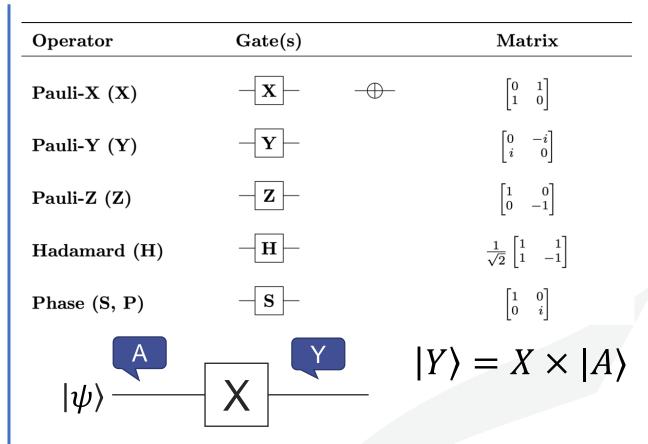
$$= \begin{pmatrix} a_0 \times \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \\ a_1 \times \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{pmatrix}$$

Computation: Logic Gates vs. Quantum Logic Gates



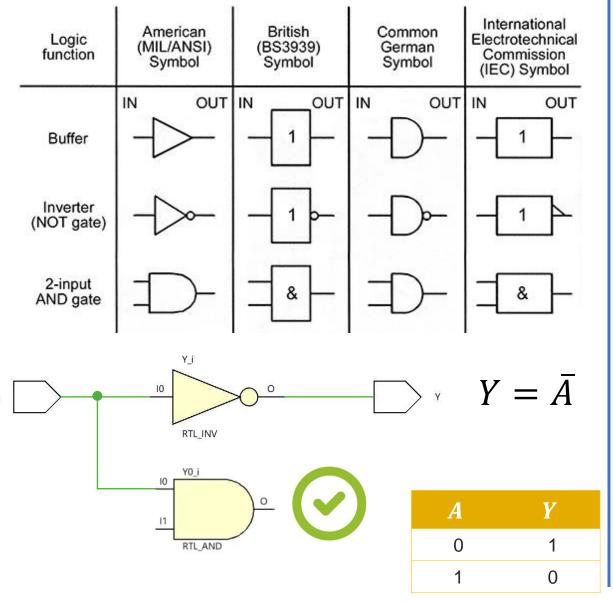


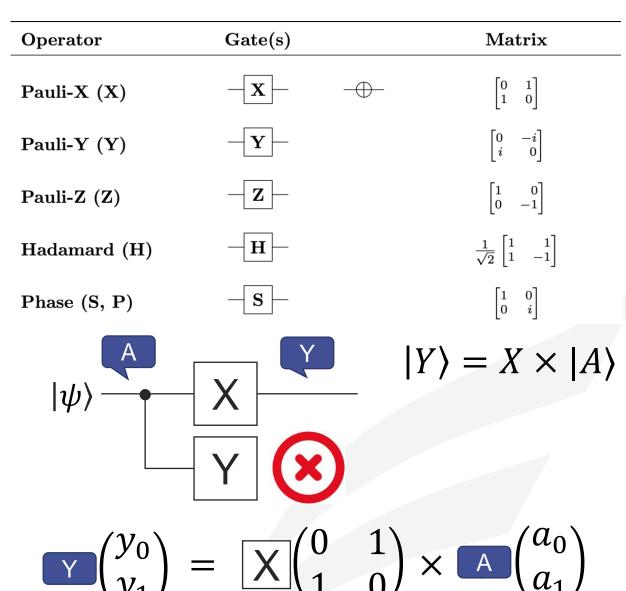
A	Y
0	1
1	0



$$\mathbf{Y}\begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \mathbf{X}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \mathbf{A}\begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

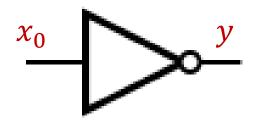
Computation: Logic Gates vs. Quantum Logic Gates





Single-Qubit Gates and Superposition

Single-bit Gate



Not Gate

x_0	y
0	1
1	0

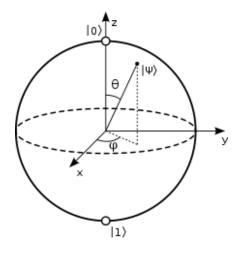
Single-Qubit Gates

- Pauli operators: X, Y, Z Gates
- Hadamard gate: H Gate
- General gate: U Gate

$$0\rangle$$
 X $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle \rightarrow |1\rangle$$



$$|0\rangle$$
 \longrightarrow $\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix}$

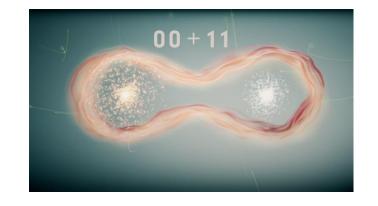
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Multi-Qubit Gates and Entanglement

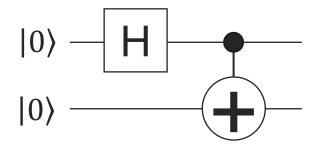
- Multi-Qubit Gates
 - Controlled-Pauli gates
 - Toffoli gate or CCNOT
 - •

$$|10\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad |11\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$CNOT \times |10\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$



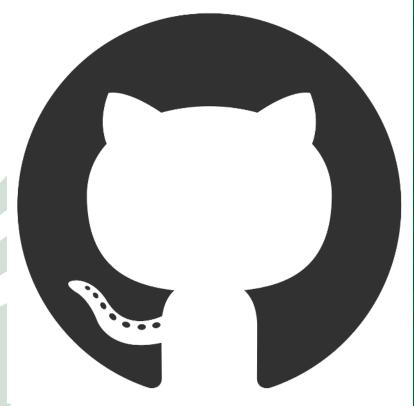
$$\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{vmatrix} 00 \\ |01 \rangle \\ |10 \rangle \\ |11 \rangle$$



$$CNOT \times (H \otimes I) \times |00\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$\times |00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{vmatrix} \mathbf{00} \rangle \\ |01\rangle \\ |10\rangle$$

Hands-On Tutorial (1) Basic Quantum Gates



Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow
 - Motivation
 - General Framework for Quantum-Based Neural Network Accelerator
 - Co-Design toward Quantum Advantage
- Recent works and conclusion

Co-Design

Given:

- Dataset (e.g., ImageNet)
- ML Task (e.g., classification)
- HW (e.g., FPGA spec.)

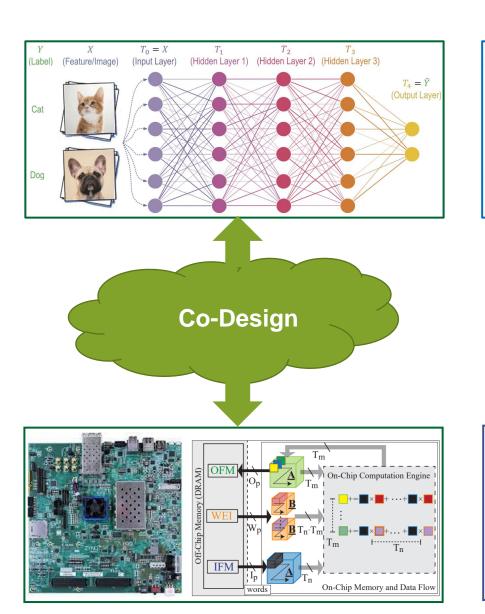
Do:

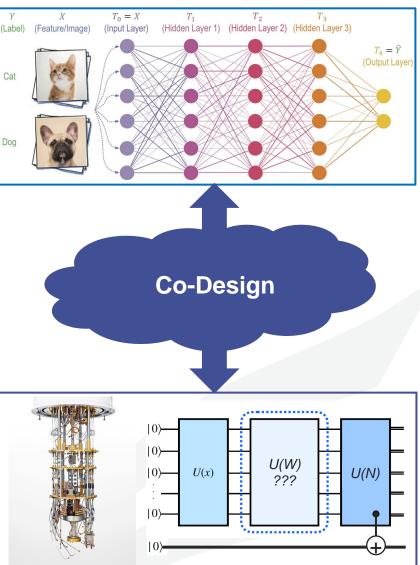
- Neural network design
- FPGA design

Objective:

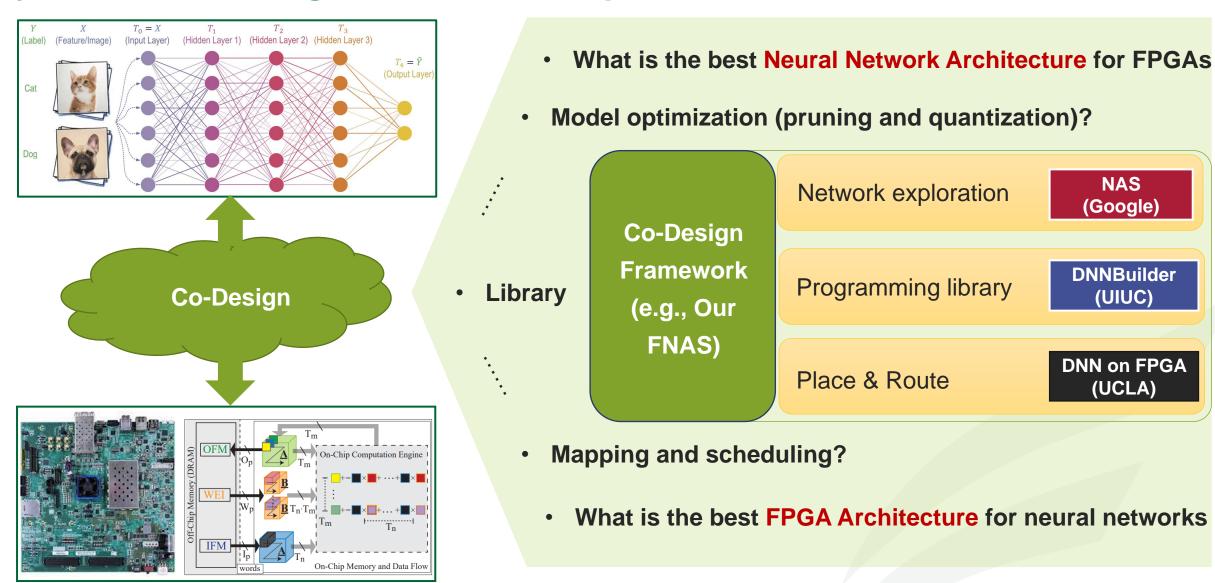
- Accuracy
- Latency
- Energy

• ...

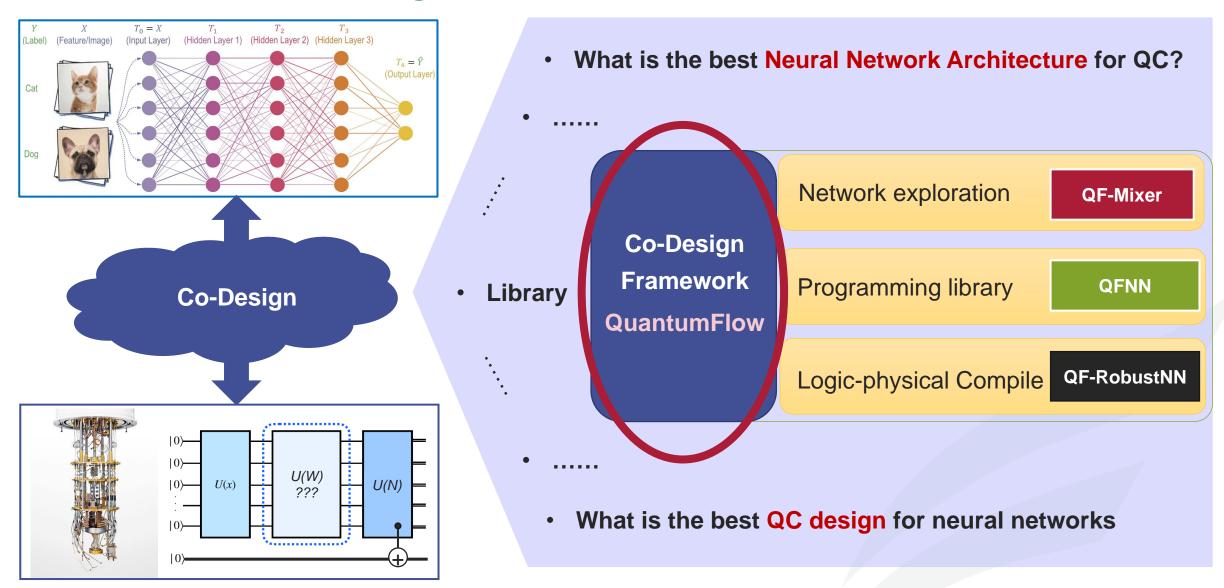




My Previous Background: Co-Design of Neural "Architectures"



Current Works: Co-Design of Neural Networks and Quantum Circuit



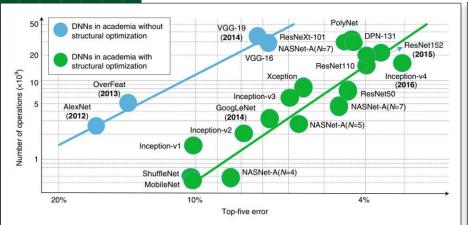
Co-Design of NN

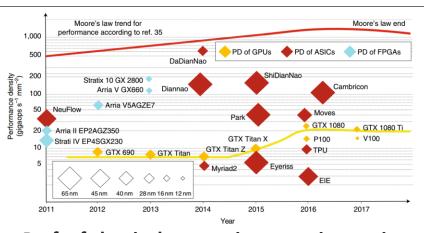
Systems on

Quantum Computer

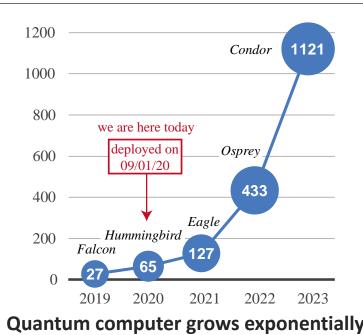


Motivation and Challenges





Perf. of classical computing stops increasing



Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

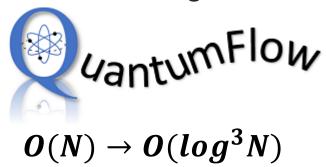
Further questions:

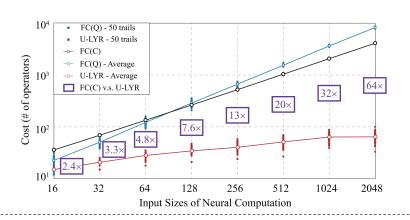
- What is the best neural network architecture for quantum acceleration?
- What is the problem for near-term quantum computing, i.e., in NISQ era?

Motivation and Challenges

Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?



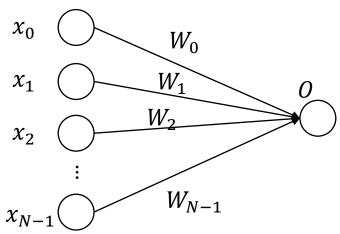


Paper Published at:

Invited Contribution and Tutorial Talks at:

IEEE International Conference on Quantum Computing and Engineering — QCE21

What's the complexity? Quantum Advantage?



Time: O(N)

Space (Comp. Res.): *0*(1)

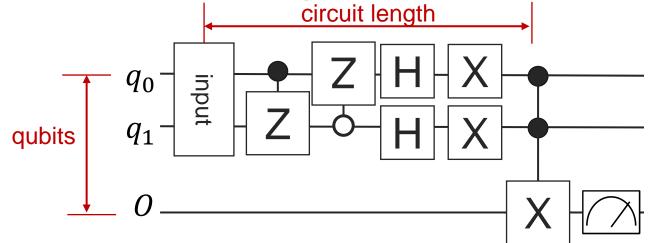
 $Time \times Space: O(N)$

Classical computer with N MAC

Time: O(1)

Space (Comp. Res.): O(N)

 $Time \times Space: O(N)$



Time-Space Complexity in Quantum computer

Time: Circuit Length

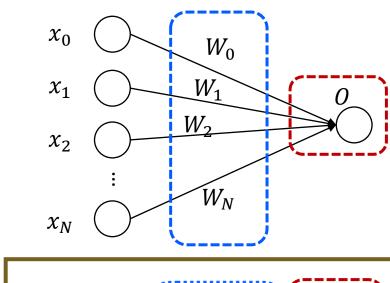
Space (Comp. Res.): Qubits

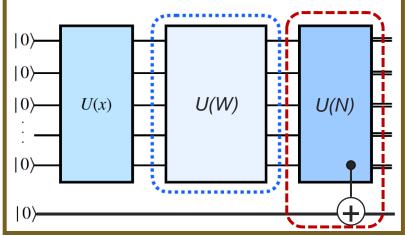
Time \times Space (T - S): Qubits \times Circuit Length

• Given that T - S complexity on classical computer is O(N), Quantum Advantage is achieved if T - S complexity on Quantum can be O(ploylogN) or lower. ----- Exponential Speedup!

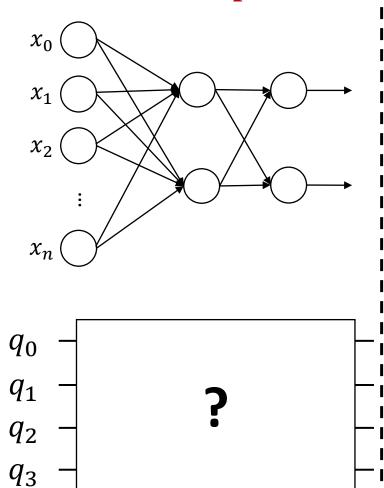
What's the Goals?

Goal 1: Correctly Implement!





Goal 2: Scale-Up!



Goal 3: Efficiently Implement!

$$O = \delta \left(\sum_{i \in [0,N)} x_i \times W_i \right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing:

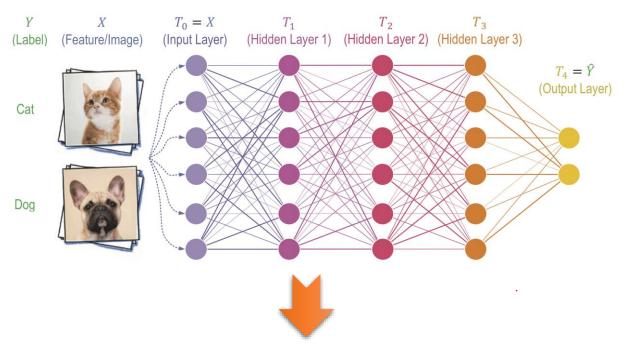
Can we reduce complexity to

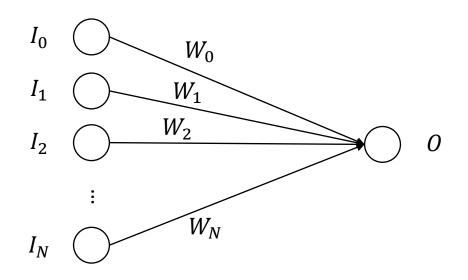
O(ploylogN), say $O(log^2N)$?

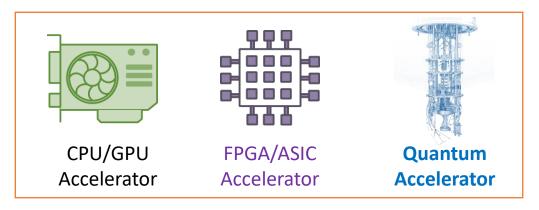
Outline – QuantumFlow

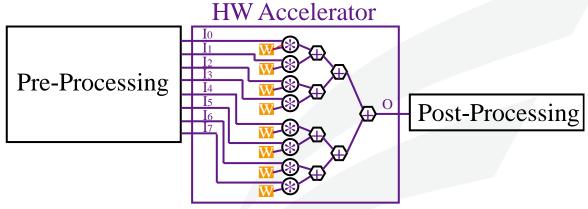
- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

Neural Network Accelerator Design on Classical Hardware

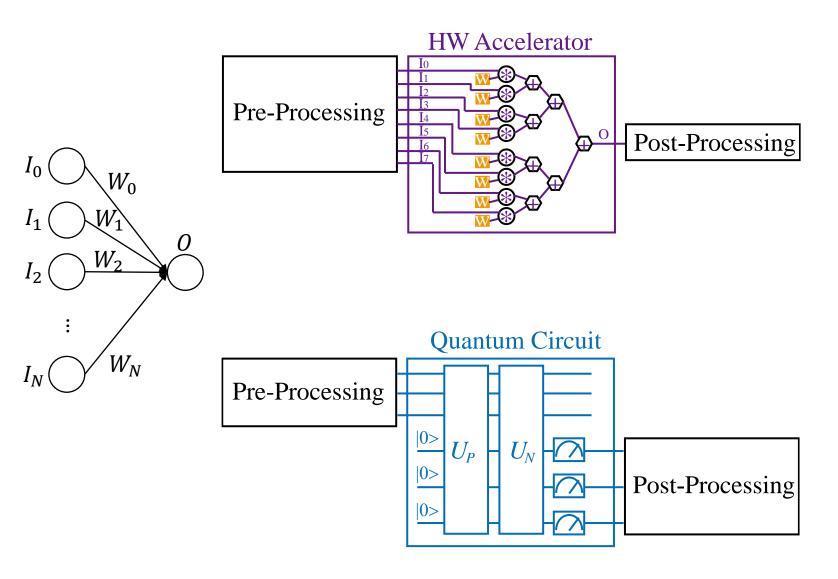








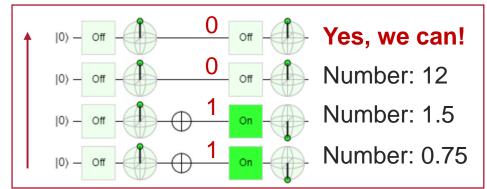
Neural Network Accelerator Design from Classical to Quantum Computing



- (1) Data Pre-Processing (*PreP*)
- (2) HW Acceleration
- (3) Data Post-Processing (*PostP*)
- (1) Data Pre-Processing (*PreP*)
- (2) HW/Quantum Acceleration
- (2.1) U_p Quantum-State-Preparation
- (2.2) U_N Quantum Neural Computation
- (2.3) M Measurement
- (3) Data Post-Processing (PostP)

 $PreP + U_P + U_N + M + PostP$

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

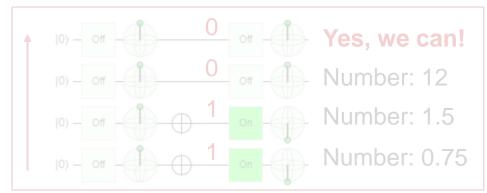


No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

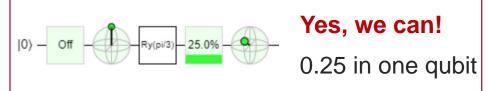


No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No



No, (1) data needs in the range of [0,1]!
(2) same complexity O(1) as classical

1-to-1 mapping! (Angle Encoding)

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) data needs in the range of [0,1]!
(2) same complexity O(1) as classical

1-to-1 mapping! (Angle Encoding)

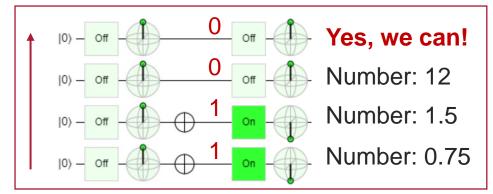
- Can we take use of entanglement of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) sum of the square of data need to be 1 (2) may have high cost to encode dataN-to-logN mapping! (Amplitude Encoding)

Encoding: 1-to-N v.s. 1-to-1 v.s. N-to-logN

Data Encoding	# of Qubit (C v.s. Q)	Data Limitation	Encoding Complexity	
1-to-N	O(N) vs. O(N ²)	Almost No!	Low	
1-to-1	O(N) vs. O(N)	[0,+1]	Low	
N-to-logN	O(N) vs. O(<i>log</i> N)	[-1,+1] and $\sum x^2 = 1$	High	

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No



No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No



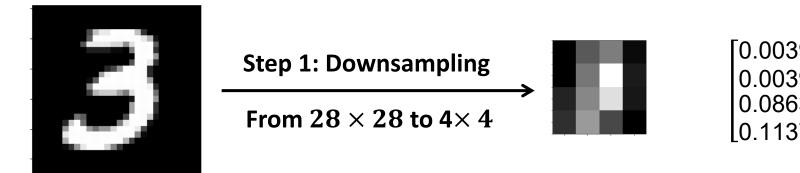
- No, (1) data needs in the range of [0,1]!
 (2) same complexity O(1) as classical

 1-to-1 mapping! (Angle Encoding)
- Can we take use of entanglement of qubits to encode data? Is this solution perfect?
- Yes / No

- No, (1) sum of the square of data need to be 1 (2) may have high cost to encode data
- n-to-logn mapping! (Amplitude Encoding)

$PreP + U_P + U_N + M + PostP$: Data Pre-Processing

- Given: (1) 28×28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)
- **Do:** (1) downsampling from 28×28 to $2^Q = 16 = 4 \times 4$; (2) converting data to be the state vector in a unitary matrix
- Output: A unitary matrix, $M_{16\times16}$



0.0039	0.2118	0.2941	0.0275
0.0039	0.2784	0.5961	0.0667
0.0863	0.3176	0.5216	0.0588
0.1137	0.3608	0.1725	0.0039

		0.2941	
0.0039	0.2784	0.5961	0.0667
0.0863	0.3176	0.5216	0.0588
0.1137	0.3608	0.1725	0.0039

Step 2: Formulate Unitary Matrix

Applying SVD method (See Listing 1 in ASP-DAC SS Paper)

Unitary matrix: $M_{16\times16}$

[SS] W. Jiang, et al. When Machine Learning Meets Quantum Computers: A Case Study, ASP-DAC'21

$PreP + U_P + U_N + M + PostP --- Data Encoding / Quantum State Preparation$

- **Given:** The unitary matrix provided by *PreP*, $M_{16\times16}$
- **Do:** Quantum-State-Preparation, encoding data to qubits
- Verification: Check the amplitude of states are consistent with the data in the unitary matrix, $M_{16\times16}$

Let's use a 2-qubit system as an example to encode a matrix $M_{4\times4}$

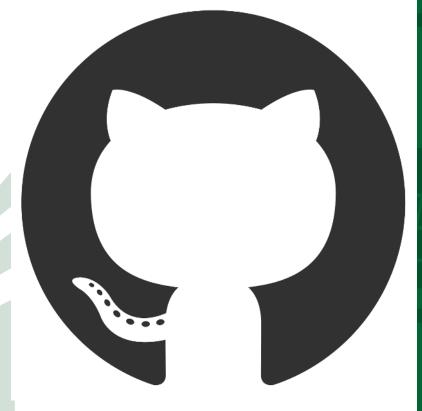
$$\begin{bmatrix} 0.3 & 0.5 \\ 0.7 & 0.9 \end{bmatrix} \xrightarrow{PreP} \begin{cases} \begin{array}{c} \textbf{0.2343} & X & X & X \\ \textbf{0.3904} & X & X & X \\ \textbf{0.5466} & X & X & X \\ \textbf{0.7028} & X & X & X \\ \end{array} \end{cases} \xrightarrow{U_P} \begin{vmatrix} \textbf{0} \\ \textbf{0} \\ \end{vmatrix} \qquad \text{input}$$

State Transition:

IBM Qiskit Implementation:

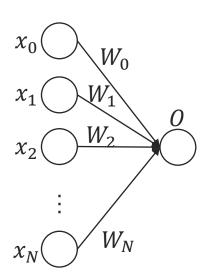
```
inp = QuantumRegister(4, "in_qubit")
circ = QuantumCircuit(inp)
iniG = UnitaryGate(data_matrix, label="input")
circ.append(iniG, inp[0:4])
```

Hands-On Tutorial (1) $PreP + U_P$



Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results



- **Given:** (1) A circuit with encoded input data x; (2) the trained binary weights w for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on the qubits, such that it performs $\frac{(x*w)^2}{\|x\|}$.
- Verification: Whether the output data of quantum circuit and the output computed using torch on classical computer are the same.

Target:
$$O = \left[\frac{\sum_{i}(x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$$

Step 1:
$$m_i = x_i \times w_i$$

- Target: $O = \left[\frac{\sum_i (x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$ Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1
 - Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.)

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\sqrt{\|x\|}}\right]$$

Step 3:
$$0 = n^2$$

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

$$\mathbf{x} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} \qquad \begin{aligned} w_0 &= 1 \\ w_1 &= 1 \\ w_2 &= 1 \\ \end{aligned}$$

$$\begin{bmatrix} a_3 \end{bmatrix} \qquad \begin{bmatrix} w_3 \end{bmatrix} \qquad w_3 &= -1 \end{bmatrix}$$

Output

|11)

|00> a_0 |01> a_1 a_2

 $m_3 = -a_3$

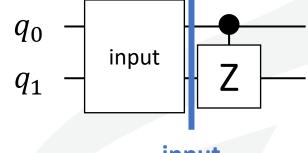
 $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \times$

Input

a_0	00>
a_1	01>
a_2	10>
a_3	11>

Quantum Circuit

 $m_3 = -1 \times a_3 = -a_3$



Step 1:
$$m_i = x_i \times w_i$$

EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad \text{input} \quad Z$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad X$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \quad q_1 \quad \text{input} \quad Z$$

input

Output
$$=$$
 U \times Input

a_0	00>		- 1	0	0	٦٨		a_0	00>
$-a_1$	01>	_	0	-1	0	0	×	a_1	01>
a_2	10>	_	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	0	1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		a_2	10>
a_3	11>	'	_ 0	U	U	1]		a_3	11>

$$U = (X \otimes I) \times CZ \times (X \otimes I)$$

Step 1:
$$m_i = x_i \times w_i$$

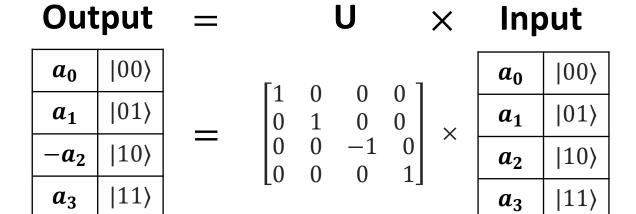
EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad \text{input} \quad Z$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad X \quad Z$$

$$w = \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad X$$

$$w = \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad X$$



$$U = (I \otimes X) \times CZ \times (I \otimes X)$$

Step 1: $m_i = x_i \times w_i$

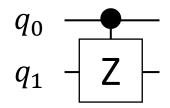
EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad - \quad \text{input} \quad \boxed{Z}$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \quad q_0 \quad -1 \quad \text{input} \quad X \quad X \quad Z$$

$$w = \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \quad q_0 \quad -1 \quad \text{input} \quad X \quad Z \quad X \quad -1$$

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ +1 \\ -1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$



Flip the sign of $|11\rangle$

$$q_0 \longrightarrow Q$$
 $q_1 - Z$

Flip the sign of $|01\rangle$

$$q_0$$
 Z q_1 Q_1

Flip the sign of $|10\rangle$

$PreP + U_P + U_N + M + PostP --- Neural Computation: Step 2$

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\sqrt{||x||}}\right]$$

EX: 4 input data on 2 qubits

Output

$\sum_{i} (m_i) / \sqrt{\ x\ }$	00>
Do not care 1	01>
Do not care 2	10>
Do not care 3	11>

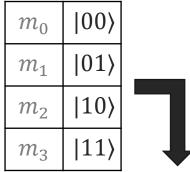
=

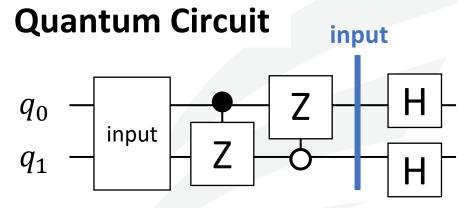
U

×

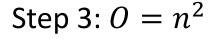
Input

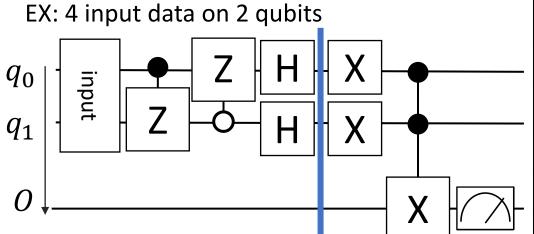
note: $||x|| = 2^N$





$PreP + U_P + U_N + M + PostP$ -- Neural Computation (Step 3) & Measurement





input

Input

$\sum_{i} (m_i) / \sqrt{\ x\ }$	000}
0	001>
Do not care 1	010>
0	011>
Do not care 2	100>
0	101>
Do not care 3	110>
0	111}

$X^{\otimes 2}$

Do not care 3	000>
0	001>
Do not care 2	010>
0	011>
Do not care 1	100>
0	101>
$\sum_{i} (m_i) / \sqrt{\ x\ }$	110>
0	111)

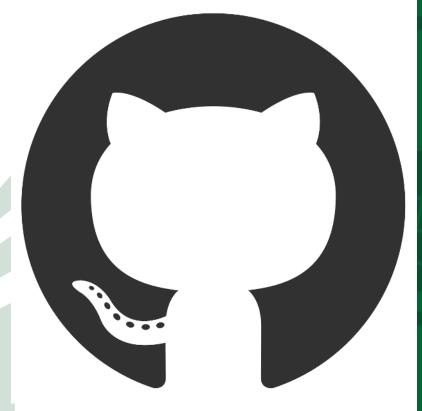
CCX

Do not care	000}
0	001⟩
Do not care	010⟩
0	011⟩
Do not care	100⟩
0	101⟩
0	110⟩
$\sum_{i} (m_i) / \sqrt{\ x\ }$	111)

Output

$$P\{O = |1\rangle\} = P\{|001\rangle\} + P\{|011\rangle\} + P\{|101\rangle\} + P\{|111\rangle\} = \left[\frac{\sum_{i}(m_{i})}{\sqrt{\|x\|}}\right]^{2}$$

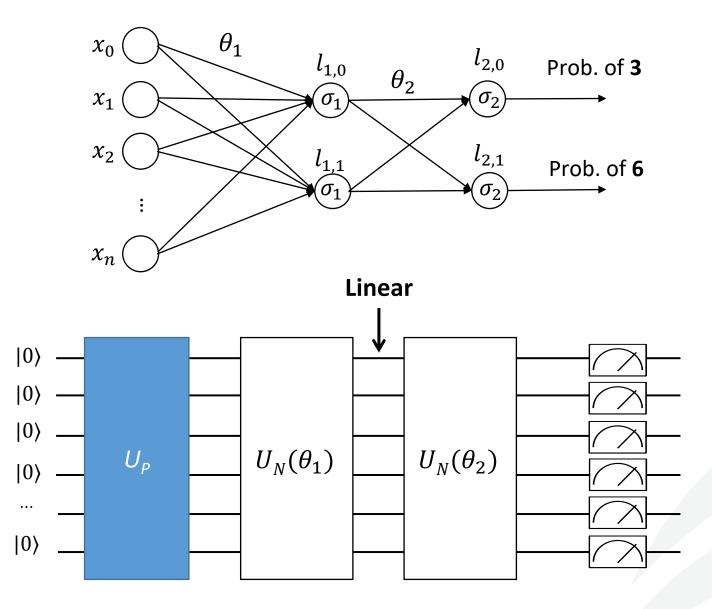
Hands-On Tutorial (2) $PreP + U_P + U_N$



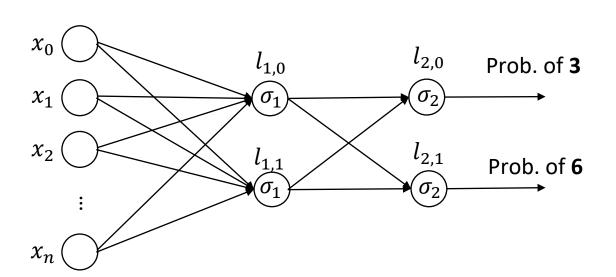
Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

Challenge 1: Non-linearity is Needed, But Difficult in Quantum Circuit



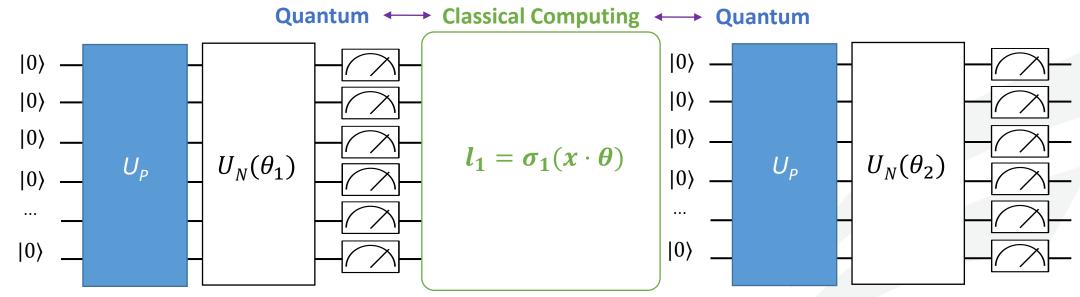
Challenge 2: Quantum-Classical Interface is Expensive



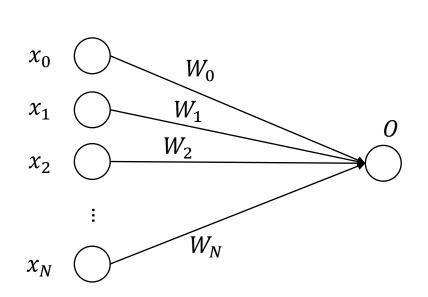
Ref [1]

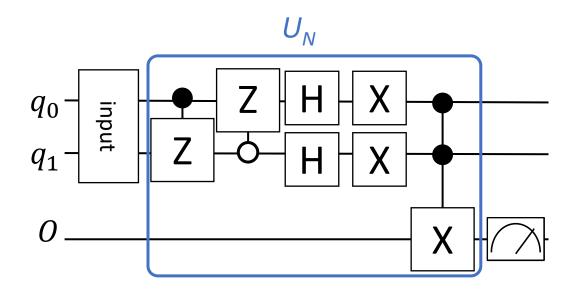
Table 2 Complexity of each step in hybrid quantum-classical computing for deep neural network with U-LYR.

Complexity	State-preparation	Computation	Measurement
Depth (T)	$O(d \cdot \sqrt{n})$	$O(d \cdot \log^2 n)$	O(d)
• .	O(n)	$O(n \cdot \log n)$	$O(n \cdot \log n)$
Cost (TS)	$O(d \cdot n^{\frac{3}{2}})$ $O(d \cdot n^{\frac{3}{2}})$ dominate	$O(d \cdot n \cdot \log^3 n)$	$O(d \cdot n \cdot \log n)$
Total (TS)	$O(d \cdot n^{\frac{3}{2}})$		



Challenge 3: High Complexity in the Previous Design





Cost Complexity

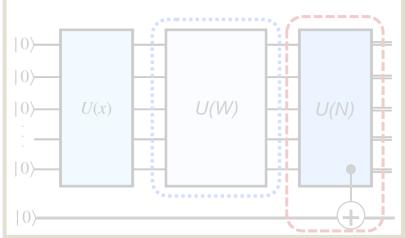
Classical Computing			
No Parallelism Full Parallelism			
Time (T)	O(<i>N</i>)	O(1)	
Space (S)	O(1)	O(<i>N</i>)	
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)	

Quantum Computing		
	Previous Design	Optimization
Circuit Depth (T)	O(<i>N</i>)	???
Qubits (S)	$O(\log N)$	$O(\log N)$
Cost (TS)	$O(N \cdot \log N)$	target $O(ploylog N)$

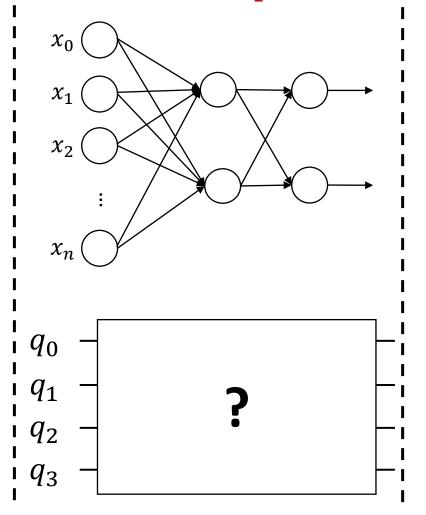
What's the Goals?

Goal 1: Correctly Implement!





Goal 2: Scale-Up!



Goal 3: Efficiently Implement!

$$O = \delta \left(\sum_{i \in [0,N)} x_i \times W_i \right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing:

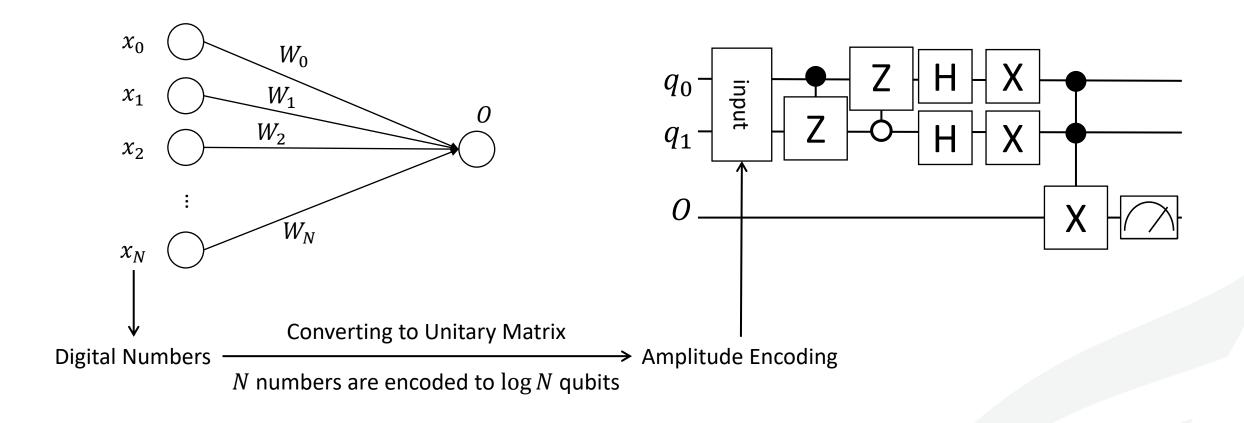
Can we reduce complexity to

O(ploylogN), say $O(log^2n)$?

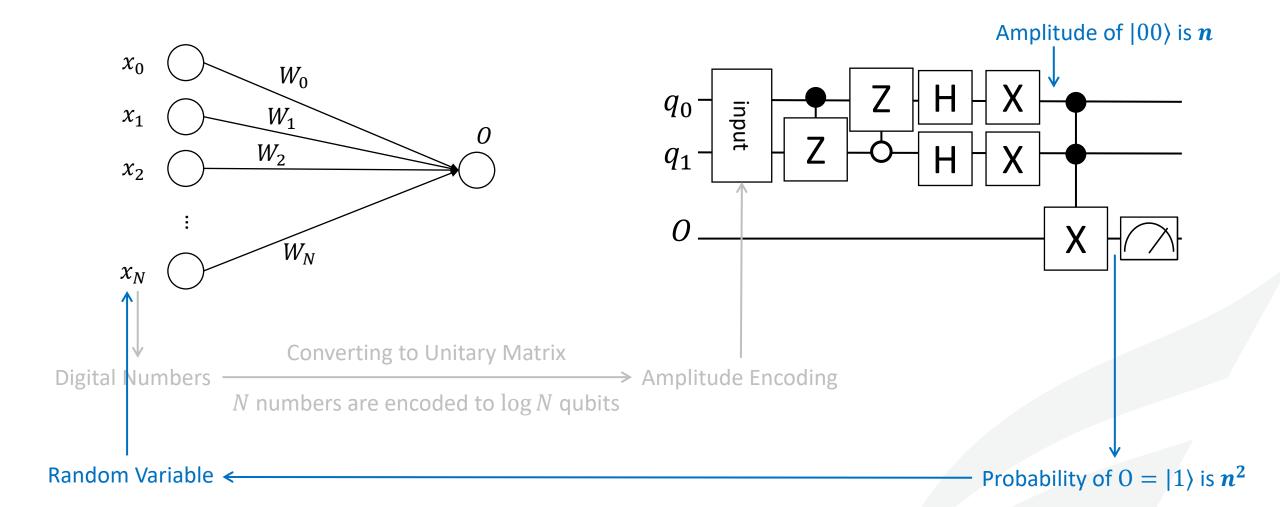
Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

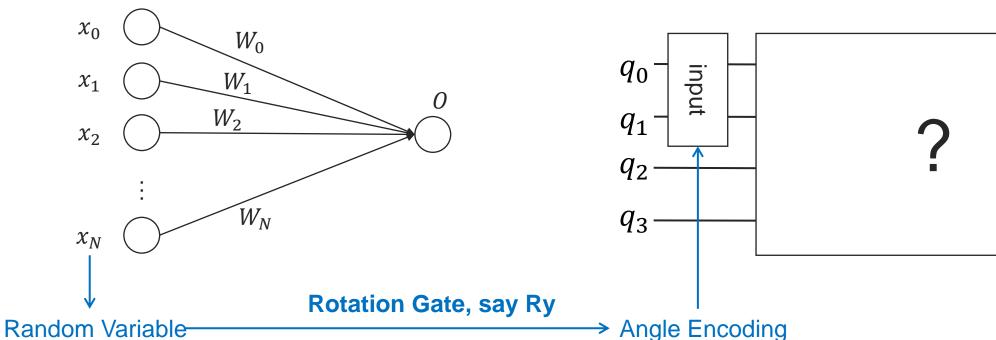
Design Direction 1: NN → **Quantum Circuit**



Design Direction 2: Quantum Circuit → NN

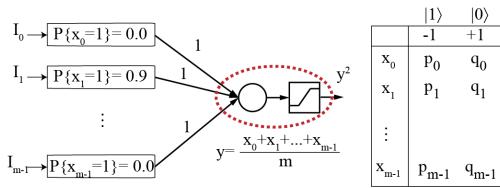


Design Direction 3: NN → **Quantum Circuit**



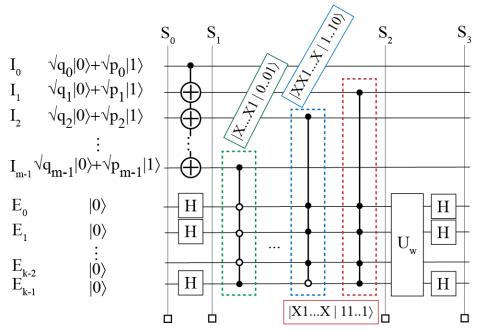
N numbers are encoded to N qubits

rvU_N --- Neural Computation



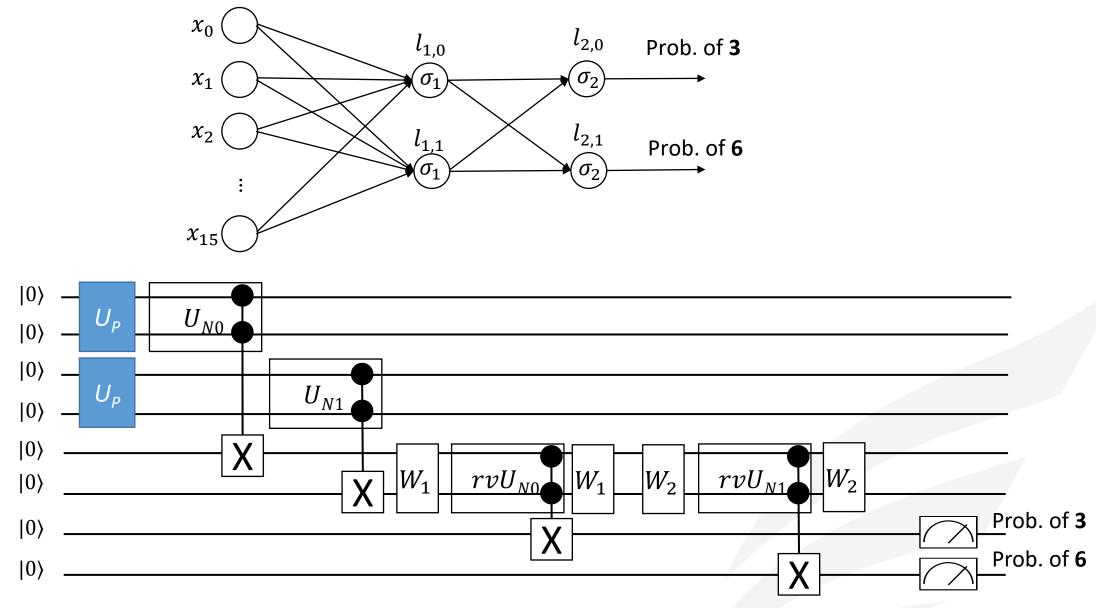
		<u>m</u>	
Tp_i	$\mathbf{p}_{\text{m-1}\dots}\mathbf{p}_{1}\mathbf{q}_{0}$	$\boldsymbol{q}_{m\text{-}1\dots}\boldsymbol{q}_1\boldsymbol{p}_0$	$\Pi \boldsymbol{q}_i$
	$p_{m-1}^{+}q_{1}p_{0}$	$q_{m-1}^{} p_1 q_0$	
	+ :	+ :	
	+ q , p,p _o	+ p . q.q.	
	Ip _i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p_{m-1}q_{1}p_{0}$ $q_{m-1}p_{1}q_{0}$ + + + + + + + + + + + + + + + + + + +

y ²	0	$\left(\frac{\text{m-2}}{\text{m}}\right)^2$	1
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1



m-k Encoder	Amplitude			
States	S_0	S_{1}	S_2	S_3
$ 000\rangle\otimes 00\rangle$	$\sqrt{q_{m-1}q_{m-2}q_{0}}$	$\sqrt{q_{m-1}q_{m-2}q_{0}}$	$\sqrt{q_{m-1}q_{m-2}q_{0}}$	$\sqrt{q_{m-1}q_{m-2}q_0}$
000⟩⊗ 01⟩	0	$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1} q_{m-2} q_0}{\cdots}$	$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1} q_{m-2} q_0}{\cdots}$	xxxxxxxxx
000⟩⊗ 11⟩	0	$\sqrt{q_{m-1}q_{k-1}q_0}$	$\sqrt{q_{m-1}q_{m-2}q_0}$	xxxxxxxxx
001\)⊗ 00\	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	$(m-2)/m \sqrt{q_{m-1}q_{m-2}p_0}$
001⟩⊗ 01⟩	0	$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1}q_{m-2}p_0}{\cdots}$	$\frac{1}{2^{k/2}} - \sqrt{q_{m-1}} q_{m-2} p_0$	xxxxxxxxxx
001⟩⊗ 11⟩	0	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	xxxxxxxxx
•••	•••		•••	•••
111⟩⊗ 00⟩	$\sqrt{p_{m-1}p_{m-2}p_0}$	$\sqrt{p_{m-1}q_{m-2}q_0}$	$\sqrt{p_{m-1}q_{m-2}q_0}$	$(2-m)/m \sqrt{q_{m-1}q_{m-2}p_0}$
111⟩⊗ 01⟩		$\frac{1}{2^{k/2}} \stackrel{\forall p_{m-1} q_{m-2} q_0}{\cdots}$	$\frac{1}{2^{k/2}} - \sqrt{p_{m-1}q_{m-2}q_0}$	XXXXXXXXX
 111⟩⊗ 11⟩	0	$\sqrt{p_{m-1}q_{m-2}q_0}$	$-\sqrt{p_{m-1}q_{m-2}q_0}$	 XXXXXXXXX

Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!



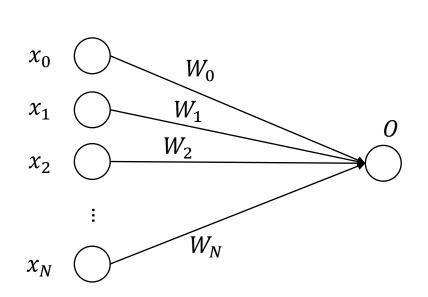
Hands-On Tutorial (3) $PreP+U_P+U_N+M+PostP$ (MNIST)

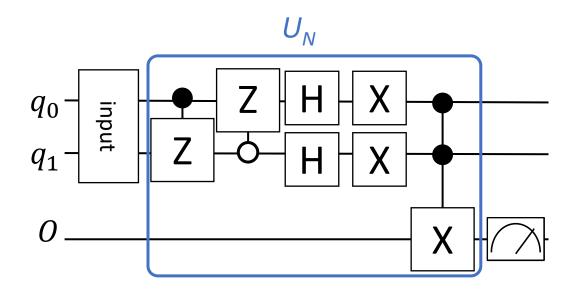


Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

Challenge 3: High Complexity in the Previous Design





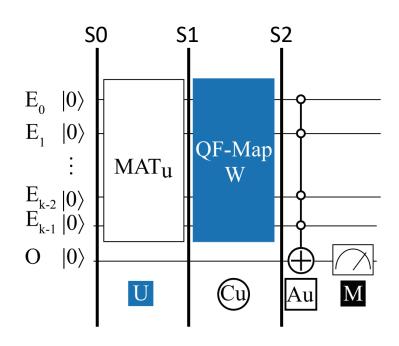
Cost Complexity

Classical Computing			
No Parallelism Full Parallelism			
Time (T)	O(N)	O(1)	
Space (S)	O(1)	O(N)	
Cost (TS)	O(N)	O(<i>N</i>)	

Quantum Computing		
	Previous Design	Optimization
Circuit Depth (T)	O(<i>N</i>)	???
Qubits (S)	$O(\log N)$	$O(\log N)$
Cost (TS)	$O(N \cdot \log N)$	target $O(ploylog N)$

QuantumFlow: Taking NN Property to Design QC

 $[0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$



$$(v_o; v_{x1}; v_{x2}; ...; v_{xn}) \times \begin{pmatrix} 1 \\ 0 \\ ... \\ 0 \end{pmatrix} = (v_0)$$

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

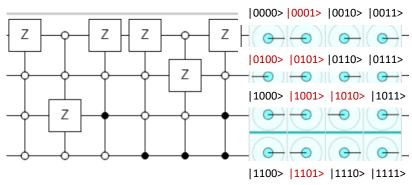
S1 -> S2:

$$W = \begin{bmatrix} +1, -1, +1, +1, -1, -1, +1, +1, +1, +1, -1, -1, +1, +1, -1, +1, +1 \end{bmatrix}^{T}$$

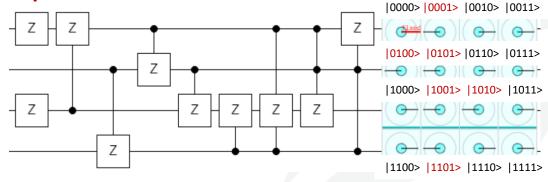
$$|0000> |0001> |0010> |0011> |0100> |0101> |0110> |0111> |1000> |1001> |1010> |1011> |1100> |1111> |1110> |1111> |1110> |1111> |1110> |1111> |1110> |1111> |1110> |1111> |1110> |1111> |1111> |1110> |1111> |1$$

$$S2 = [0, -0.59, 0, 0, -0, -0.07, 0, 0, 0, -0.66, -0.33, 0.33, 0, -0, 0, 0]^T$$

Implementation 1 (example in Quirk):

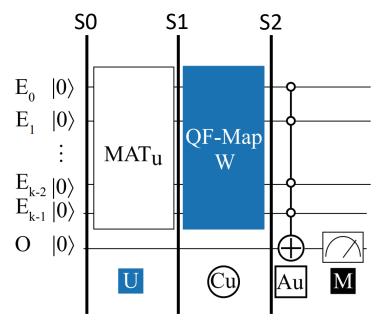


Implementation 2:



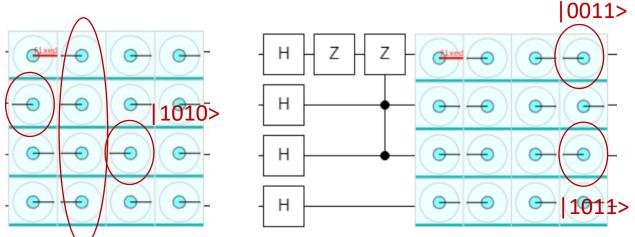
[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

QuantumFlow: Taking NN Property to Design QC



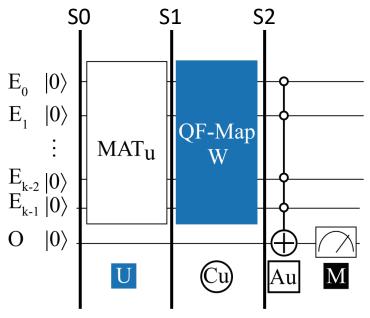
Property from NN

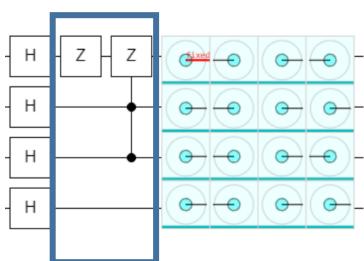
- The weight order is not necessary to be fixed, which can be adjusted
 if the order of inputs are adjusted accordingly
- **Benefit:** No need to require the positions of sign flip are exactly the same with the weights; instead, only need the number of signs are the same.



```
S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T
ori
+ - + + -
S1' = [0, 0.59, 0, 0.33, 0.33, 0.07, 0, 0, 0.66, 0, 0, 0, 0, 0, 0]^T
```

QuantumFlow: Taking NN Property to Design QC





Algorithm 4: QF-Map: weight mapping algorithm

```
Input: (1) An integer R \in (0, 2^{k-1}]; (2) number of qbits k;
Output: A set of applied gate G
void recursive(G,R,k){
     if (R < 2^{k-2})
          recursive(G,R,k-1); // Case 1 in the third step
     else if (R == 2^{k-1}){
          G.append(PG_{2k-1}); // Case 2 in the third step
          return;
     }else{
          G.append(PG_{2k-1});
          recursive (G, 2^{k-1} - R, k-1); // Case 3 in the third step
// Entry of weight mapping algorithm
set \min(R,k){
     Initialize empty set G;
     recursive(G,R,k);
     return G
```

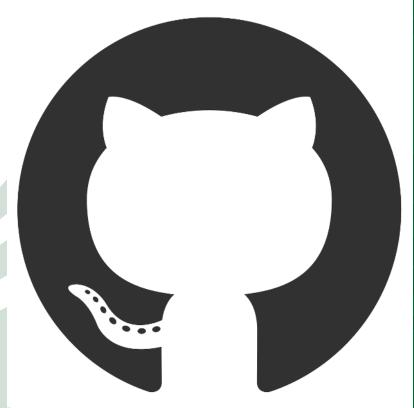
Used gates and Costs

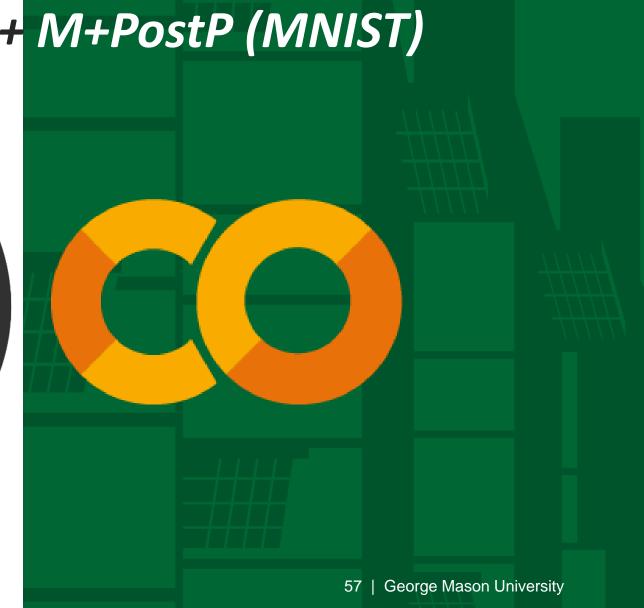
Gates	Cost					
Z	1					
CZ	1					
C^2Z	3					
C^3Z	5					
C ⁴ Z	6					
C^kZ	2k-1					

Worst case: all gates

 $O(k^2)$

Hands-On Tutorial (4) $PreP + U_P + Optimized\ U_N + M + PostP\ (MNIST)$

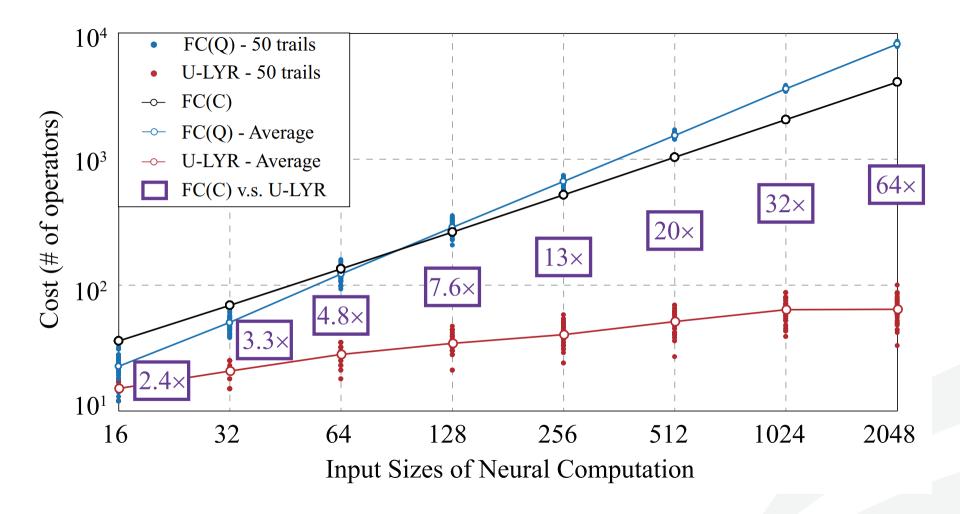




Outline – QuantumFlow

- Motivation
- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

QuantumFlow Results



[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

QuantumFlow Achieves Over 10X Cost Reduction

	Str	Structure		MLP(C)		FFNN(Q)			QF-hNet(Q)					
Dataset	In	L1	L2	L1	L2	Tot.	L1	L2	Tot.	Red.	L1	L2	Tot.	Red.
{1,5}	16	4	2				80	38	118	1.27×	74	38	112	1.34×
{3,6}	16	4	2	100	1.0	1.70	96	38	134	1.12 ×	58	38	96	1.56 ×
{3,8}	16	4	2	132	18	150	76	34	110	1.36 ×	58	34	92	1.63 ×
{3,9}	16	4	2				98	42	140	$\textbf{1.07} \times$	68	42	110	1.36 ×
$\{0,3,6\}$	16	8	3	264	5 1	315	173	175	348	$\textbf{0.91} \times$	106	175	281	1.12 ×
{1,3,6}	16	8	3	204	31	313	209	161	370	$\textbf{0.85} \times$	139	161	300	1.05 ×
$\{0,3,6,9\}$	64	16	4	2064	132	2196	1893	572	2465	$\textbf{0.89} \times$	434	572	1006	2.18 ×
{0,1,3,6,9}	64	16	5	2064	165	2220	1809	645	2454	$\textbf{0.91} \times$	437	645	1082	2.06 ×
$\{0,1,2,3,4\}$	64	16	5	2004	103	<i>LLL9</i>	1677	669	2346	0.95 ×	445	669	1114	2.00 ×
{0,1,3,6,9}*	256	8	5	4104	85	4189	5030	251	5281	0.79 ×	135	251	386	10.85×

^{*:} Model with 16×16 resolution input for dataset $\{0,1,3,6,9\}$ to test scalability, whose accuracy is 94.09%, which is higher than 8×8 input with accuracy of 92.62%.

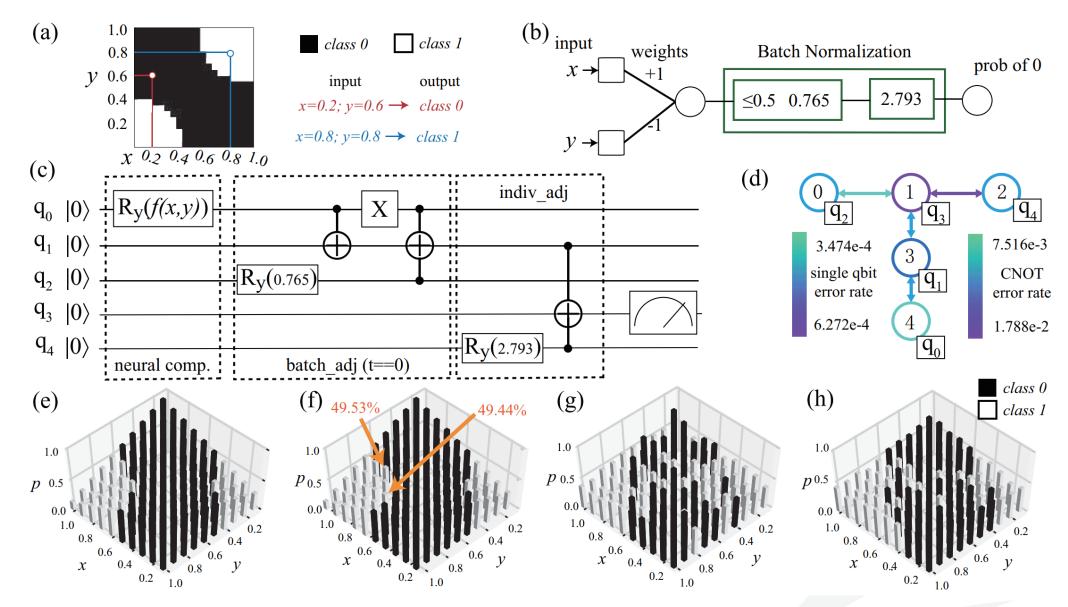
[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. arXiv preprint arXiv:1912.12486.

QF-Nets Achieve the Best Accuracy on MNIST

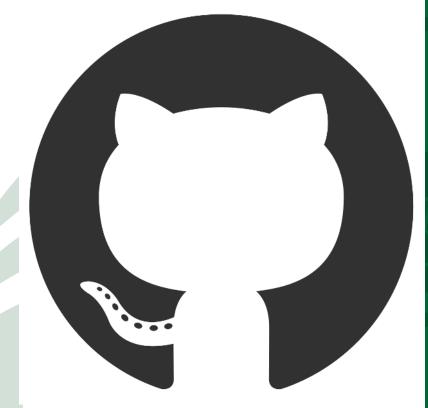
			w/o BN			w/ BN					
Dataset	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	
1,5	61.47%	61.47%	69.12%	69.12%	90.33%	55.99%	55.99%	85.30%	84.56%	96.60%	
3,6	72.76%	72.76%	94.21%	91.67%	97.21%	72.76%	72.76%	96.29%	96.39%	97.66%	
3,8	58.27%	58.27%	82.36%	82.36%	89.77%	58.37%	58.07%	86.74%	86.90%	87.20%	
3,9	56.71%	56.51%	68.65%	68.30%	95.49%	56.91%	56.71%	80.63%	78.65%	95.59%	
0,3,6	46.85%	51.63%	49.90%	59.87%	89.65%	50.68%	50.68%	75.37%	78.70%	90.40%	
1,3,6	60.04%	59.97%	53.69%	53.69%	94.68%	59.59%	59.59%	86.76%	86.50%	92.30%	
0,3,6,9	72.68%	72.33%	84.28%	87.36%	92.85%	69.95%	68.89%	82.89%	76.78%	93.63%	
0,1,3,6,9	50.00%	51.10%	49.00%	43.24%	87.96%	60.96%	69.46%	70.19%	71.56%	92.62%	
0,1,2,3,4	46.96%	50.01%	49.06%	52.95%	83.95%	64.51%	69.66%	71.82%	72.99%	90.27%	

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. arXiv preprint arXiv:1912.12486.

On Actual IBM "ibmq_essex" (retired) Quantum Processor



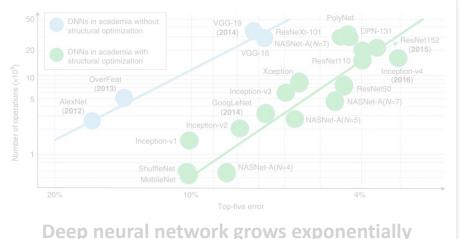
Hands-On Tutorial (5) Comparison

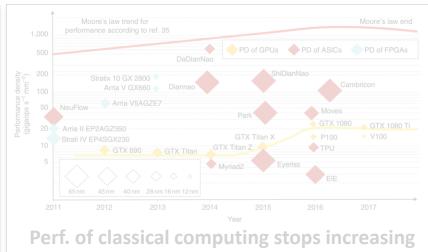


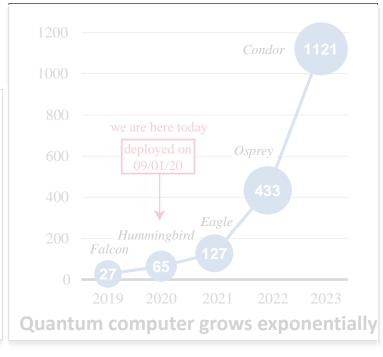
Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow
 - Motivation
 - General Framework for Quantum-Based Neural Network Accelerator
 - Co-Design toward Quantum Advantage
- Recent works and conclusion

Motivation and Challenges







Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

Further questions:

- What is the best neural network architecture for quantum acceleration?
- What is the problem for near-term quantum computing, i.e., in NISQ era?

Current works:Quatnum NN Co-Design Stack

Co-Design
Framework
Quantum
Flow

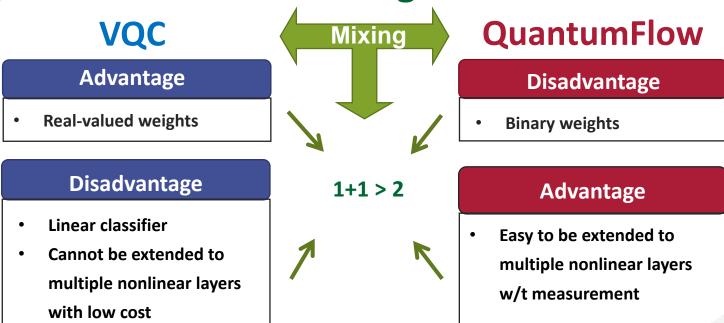


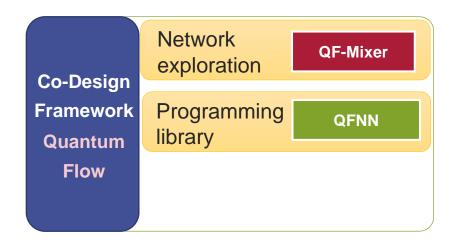
TABLE I EVALUATION OF QNNs WITH DIFFERENT NEURAL ARCHITECTURE

Architec	ture	MNIST-2 [†]	MNIST-3†	MNIST-4‡	MNIST-5‡	MNIST§	
VQC (V×R1)		97.91%	90.09%	93.45%	91.35%	52.77%	
QuantumFlow		95.63%	91.42%	94.26%	89.53%	69.92%	
	V+U	97.36%	92.77%	94.41%	93.85%	88.46%	
QF-MixNN	V+U+P	87.45%	82.9%	92.44%	91.56%	90.62%	
	V+P	91.72%	76.93%	88.43%	85.02%	49.57%	
Input resolutions: † 4 × 4; ‡ 8 × 8; § 16 × 16;							

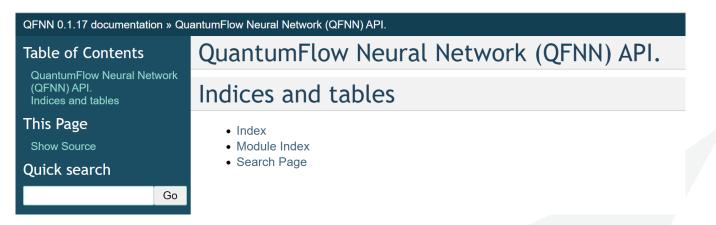
Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs

Z. Wang, Z. Liang, S. Zhou, C. Ding, J. Xiong, Y. Shi, **W. Jiang**, Accepted by IEEE/ACM International Conference On Computer-Aided Design (ICCAD), Virtual, 2021. (11/02/2021)

Current works: Quatnum NN Co-Design Stack



Qiskit + O PyTorch +



https://jqub.ece.gmu.edu/categories/QF/gfnn/index.html

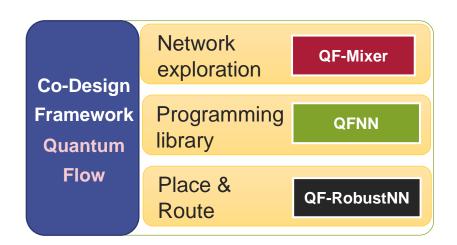
QuantumFlow: An End-to-End Quantum Neural Network **Acceleration Framework**

Zhirui Hu and W. Jiang

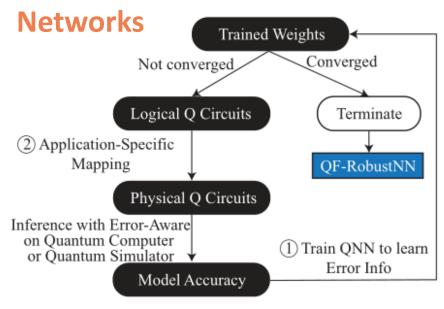
IEEE International Conference on Computing Quantum Engineering QCE 21 (QuantumWeek)

https://github.com/jqub/qfnn

Current works:Quatnum NN Co-Design Stack



The first noise-aware training for Quantum Neural



Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow

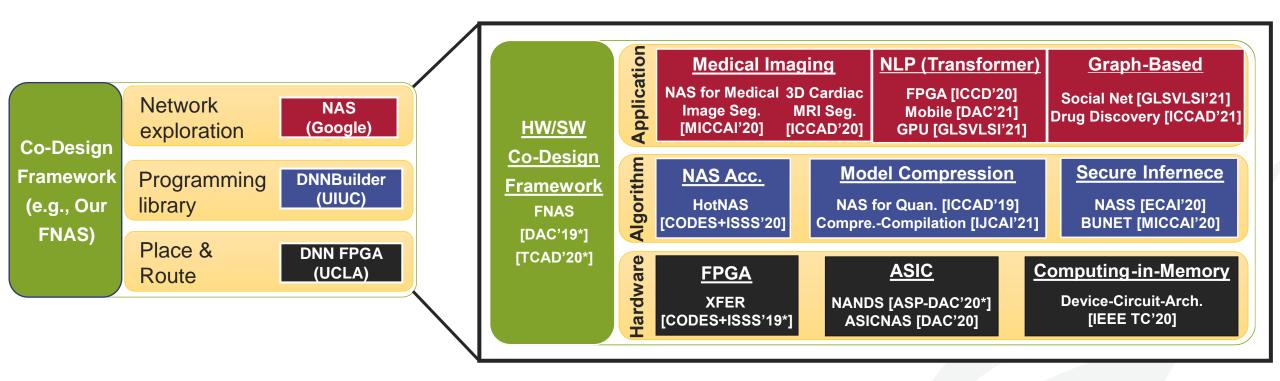
Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, **W. Jiang**, *Accepted by IEEE/ACM International Conference On Computer-Aided Design (ICCAD)*, *Virtual*, 2021. (11/02/2021)

Acurracy Result from Different Noise Model

Development of Co-Design Stack in Classical Computing

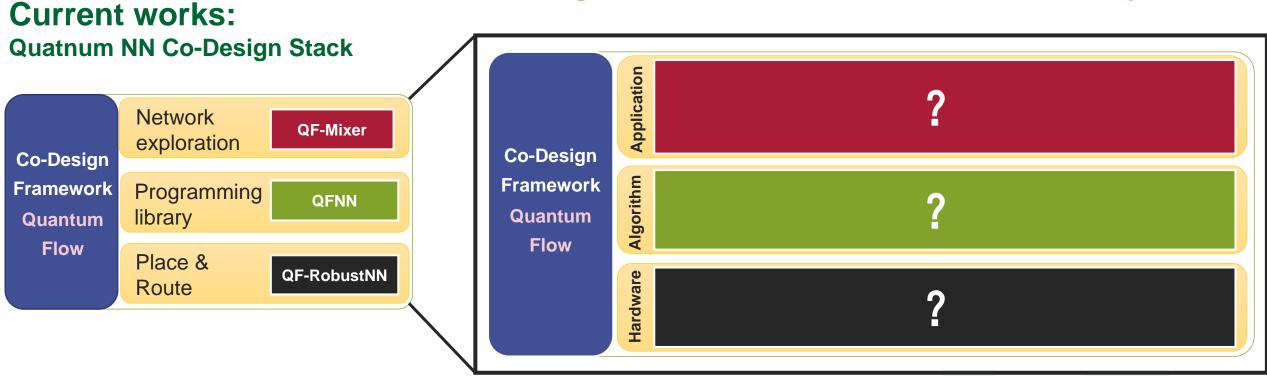
Our works:

Co-Design for Automation of Classical Neural Network Systems



Our future works:

Co-Design for Automation of Quantum Neural Network Systems



Conclusion & Resources

- Quantum computing is promising for accelerating neural networks
- Co-design can build a better quantum neural network accelerator
- Along with the development of quantum computers and quantum neural networks, we will see real-world applications in the NISQ Era

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI)

https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

https://www.nature.com/articles/s41467-020-20729-5

https://jqub.ece.gmu.edu (JQub Website)

https://jqub.ece.gmu.edu/categories/QF (News and slides)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://arxiv.org/pdf/2012.10360.pdf

https://arxiv.org/pdf/2109.03806.pdf

https://arxiv.org/pdf/2109.03430.pdf

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000