ROAD4NN: Research Open Automatic Design for Neural Networks @ DAC’2021

DESIGN
AUTOMATION

FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

Towards the Automatic Design of Quantum Neural Networks

Weiwen Jiang, Ph.D.
Assistant Professor
Electrical and Computer Engineering
George Mason University
wjiang8@gmu.edu
https://jqub.ece.gmu.edu

Slides at https://jqub.ece.gmu.edu/categories/QF/




NN LS. $Z 20020202, . h .- B
Speaker

Weiwen Jiang « Education Backgroun

Assistant Professor

Electrical and Computer Engineering (ECE)
George Mason University

Room3247, Nguyen Engineering Building
wjiang8@gmu.edu

(703)-993-5083

* University of Not

« Research Interests

d

« Chongqging University (2013-2019)
* University of Pittsburgh (2017-2019)

re Dame (2019-2021)

» Automatic HW/SW Co-Design

* Quantum Machin

https://jgub.ece.gmu.edu/

e Learning

First HW/SW Co-Design Framework using NAS

HW/SW
Co-Design

Framework

FNAS
[DAC’19*]
[TCAD’20*]

IEEE Council on Electronic Design_Automation

to
Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge,

W . . .
\\_s‘-‘v& g 7"6.@%’,’:- g ﬁyﬂ/\ f‘/d‘--
s/ £n

4 IEEE

hereby presents the

2021 IEEE Transactions on Computer-Aided Design
Donald O. Pederson Best Paper Award

Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Ski, Fingtong Hu
for the paper entitled
“Hardware/Software Co-Exploration of Newral Architectures”

ng Rajesh Gupta
t Edito fie

i o
s
& Design Automation

Best Paper
c _ : 2 Award:
.g Medical Imaging NLP (Transformer) Graph-Based
[l NAS for Medical 3D Cardiac | FPGAICCD'20] | social Net [GLSVLSI21]
_& Image S,eg. MRI Seg. Mobile [DAC’21] Drug Discovery [ICCAD’21]
2 [MICCAI'20] [ICCAD’20] GPU [GLSVLSI'21]
E NAS Acc. Model Compression Secure Infernece
'E HotNAS NAS for Quan. [ICCAD’19] NASS [ECAI'20]
% [CODES+ISSS’20] [l Compre.-Compilation [IJCAI'21] BUNET [MICCAI’20]
@ . .
§ FPGA ASIC Computing-in-Memory
© XFER NANDS [ASP-DAC’20*] Device-Circuit-Arch. B P r
=Bl [CODES+ISSS’19*] ASICNAS [DAC’20] [IEEE TC’20] eSt. ape
= Nominations:

ASIA SOUTH PACIFIC

DESIGN
AUTOMATON

EMBEDDED
SYSTEMS
WEEK

B sign A
® L&) DESIGN
AUTOMATION
L)
FAOM CHIFS TO SYSTEMS — LEARN TODA

¥, CREATE TOMORROW




Quantum Computers Have Come to Our Life
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Quantum Has Potential

—or Neural Network
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Deep neural network grows exponentially
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Quantum computer grows exponentially

Fundamental questions:

« Can we implement Neural Network on Quantum Computers?

« Can we achieve benefits in doing so?

Further questions:

« [Q1] What is the best neural network architecture for quantum acceleration?

 [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

QuantumFlow in Road4NN Workshop @ DAC

Dr. Weiwen Jiang, ECE, GMU
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Preliminary Results Answered to Fundamental Questions
Fundamental questions:
« Can we implement Neural Network on Quantum Computers?

« Can we achieve benefits in doing so?
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Towards the Automatic Design of Quantum Neural Networks
Further questions:

hli+1]

« [Q1] What is the best neural network architecture for quantum acceleration?

e 3 x 3 depthwise-separable conv e 3 X 3 average pooling
e 5 x 5 depthwise-separable conv e 3 X 3 max pooling f)
e 3 X 3 atrous conv with rate 2 e skip connection .
e 5 X 5 atrous conv with rate 2 e no connection (zero)
« [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?
?
FPGA Error: 10715 GPU Error: 10715 STT-RAM Error: 1077 Qubit Error: 10~%~1072

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 6 | George Mason University




Outline

= Background
= Co-Design: from Classical to Quantum
*  QuantumFlow for automatic design of qguantum neural networks

=  Quantum Neurons
=  QF-Mixer for [Q1]
=  Other Recent works and conclusion

= QF-RobustNN for [Q2]
= QFNN Library

Dr. Weiwen Jiang, ECE, GMU 7 | George Mason University




Co-Design

Y X To =X T Ty T, Y X Ty =X T T, Ts
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 Dataset (e.g., ImageNet) ca

ML Task (e.g., classification)
« HW (e.g., FPGA spec.)

Do:
* Neural network design
« FPGA design

Co-Design Co-Design

Objective:
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My Previous Background: Co-Design of Neural “Architectures”
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QuantumFlow in Road4NN Workshop @ DAC

« What is the best Neural Network Architecture for FPGAs

 Model optimization (pruning and quantization)?

: NAS
Network exploration (Google)
Co-Design
.
_ Framework ina lib DNNBuilder
Library e.q., Our Programming library (UIUC)
.g., J
FNAS) q
DNN on FPGA
Place & Route
=

« Mapping and scheduling?

e What is the best FPGA Architecture for neural networks

Dr. Weiwen Jiang, ECE, GMU 9 | George Mason University



Current Works: Co-Design of Neural Networks and Quantum Circuit
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Co-Design

>

QuantumFlow in Road4NN Workshop @ DAC

 What is the best Neural Network Architecture for QC?

Network exploration

Co-Design

« Library FEWEIILEN  Programming library QFNN

QuantumFlow
Logic-physical Compile
<

 What is the best QC design for neural networks

Dr. Weiwen Jiang, ECE, GMU 10 | George Mason University



Outline

= Background
= Co-Design: from Classical to Quantum
* QuantumFlow for automatic design of quantum neural networks

=  Quantum Neurons
=  QF-Mixer for [Q1]
=  Other Recent works and conclusion

= QF-RobustNN for [Q2]
= QFNN Library
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Towards the Automatic Design of Quantum Neural Networks
Further questions:

hli+1]

« [Q1] What is the best neural network architecture for quantum acceleration?

3 x 3 depthwise-separable conv e 3 x 3 average pooling
5 x 5 depthwise-separable conv e 3 X 3 max pooling

3 X 3 atrous conv with rate 2 e skip connection

5 X 5 atrous conv with rate 2 e no connection (zero)

Convolution Cell

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 12 | George Mason University
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Existing Quantum Neuron Designs

= Variational quantum circuit (VQC)-based neuron

V-Neuron (V-NEU) - N
, . — , Advantage
) —R(® R4~ A widely used quantum \ ,
0) —p/ o R neuron * Real-valued weights
S 1 * Reuse the input qubits as
Ol b R ]
. — output qubits . \
g) —Rl— i o) — Disadvantage
(b) V-NEU i g

* Linear classifier
* Cannot be extended to
* Make use of the entanglement from quantum

: , _ multiple nonlinear layers
computing to increase the model complexity

with low cost

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 13 | George Mason University
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Existing Quantum Neuron Designs

" Q-Neuron Disadvantage
Input register  |¢¢) ——¢————————  S— | R E—— ) SA— .  Data encoding: one-to-one
Ancilla qubit 1 [0) TRy(QwJ RLW)i |0>TRy(2%0) RW@; mapping (almost impossible to
Ancilla qubit 2~ |0) +—————] e l — A achieve quantum advantage)
(D (ID) ° - il- H
ouput qubit [0 o Repe?t until suc.cess to build
— non-linear function
(Inefficient)
=  Q-Non-Linear Neuron
a b [ . N
( }IU> E - 191(v)) " 0) 7 —g2(w)) Disadvantage
. U )
m ") Uga m 7 ey |Yee|
|0) 7‘—H®mT FTT—H " |- 10) 7—H®™ T FT e Quantum advantage cannot
_pn logn+1 r be achieved
| x5 U, G

Apply Boolean function to realize any non-linear function
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Existing Quantum Neuron Designs

= Q-Artificial Neuron

H A B N2R . .
q, 0) — Z —o|— Disadvantage
T HN b | '

q, | ge~
0) Z T ] 1 * Both inputs and weights are
4 [0) zZ —¢—— (NZR) binary

Ancilla o m

Implementing binary perceptron in quantum computer

Z. wang, et al.
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https://arxiv.org/pdf/2109.03806.pdf

Existing Quantum Neuron Designs

= Customized neurons of QuantumFlow

Weights 0

Advantage

P-Neuron (P-NEU)

* Input encoding: Probability encoding

(Angle encoding)
* Output encoding: Probability encoding

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

_I_

(d) P-NEU

Easy to be stacked to form

multiple nonlinear layers

Disadvantage

Binary weights

QuantumFlow in Road4NN Workshop @ DAC

Dr. Weiwen Jiang, ECE, GMU
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https://arxiv.org/pdf/2006.14815.pdf

Existing Quantum Neuron Designs

= Customized neurons of QuantumFlow

; & o Weights 0 i Advantage )
' o) [} ’L Clge \ © %
LN 4 2 () * It could be connected to P-
e Neuron seamlessly
9. = 7] —H 0
o) 9) — %:1 * It achieves quantum
L 0) . advantage
(e) U-NEU
U-Neuron (U-NEU) ) .
* Input encoding: Amplitude encoding Disadvantage

* Output encoding: Probability encoding . .
e Binary weights

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications
QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 17 | George Mason University



https://arxiv.org/pdf/2006.14815.pdf

Motivation
=  Mixing/connecting different neurons in an NN could improve the performance

=  For example: VQC and neurons of QuantumFlow are complementary

vVQC QuantumFlow

Advantage Disadvantage

* Real-valued weights e Binary weights

* Linear classifier :
ear classitie * Easy to be extended to multiple

e Cannot be extended to .
nonlinear layers w/t
multiple nonlinear layers with

measurement

low cost

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 18 | George Mason University



Challenges

hli+1]

sep
5x5
~

Reduction Cell

Different operators/neurons in
classical computing can be
connected seamlessly.

QuantumFlow in Road4NN Workshop @ DAC

Dr. Weiwen Jiang, ECE, GMU

No Rules No Rules

F F
“ ' Arbitrary
P-Neuron Mixture
—_—

No Rules

Rule A

QF-Mixer /

P-Neuron

Rule B

Connect different quantum neurons
may incur high overhead,;
may not be seamless.

19 | George Mason University
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Challenges: Designs May Base On Different Data Encoding

« Can we encode an arbitrary number into quantum computer? Is it efficient?

" Yes/No s odoldd  Or1dan Yes, we can! No, because it uses too many qubits!
o or LB 0 .1 Number: 12 This encoding is similar to classical bits, where
oL or LR _@_1_ B Number: 1.5 each qubit is regarded as a binary number!
o or LD _@_1_ - Number: 0.75 1-to-N mapping! (Boolean Function)

Q-Non-Linear Neuron

a m (b) mll
( )|0) 7 —1g1(v)) 10) ~ U —|g2(w)
m r U m e 5
10) 7’—H®m|—)T—FTT— S 10) 7’—H®m|—>T— FTT | 921
. pn - logn+1 .
|x*)p” U, |p) # G

Apply Boolean function to realize any non-linear function

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 20 | George Mason University
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Challenges: Designs May Base On Different Data Encoding

« Can we take use of superposition of qubits to encode data? Is this solution perfect?

= Yes/No Yes, we can! No, (1) data needs in the range of [0,1]!

- on L ] 2s o Lo _ _ (2) same complexity O(1) as classical
0.25in one qubit 1-to-1 mapping! (Probability Encoding)

Q-Neuron
L L2 e — ) ApE— | S R —  SR—
Ancillaqubit 1 [0) + Ry (2) R,L(an)i 0) 1 By (2¢) RL(Z{,Q)E
Ancilla qubit2  |0) 4—@ [iY ] A
Y I
Output qubit  |0) ﬂ

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 21 | George Mason University



Challenges: Designs May Base On Different Data Encoding

Q-Artificial Neuron

1
H A ~2R

B
Tojoy 4 H 7 1 T H~ E_

d, (0) — L7 I - (NIRY
Ancilla d— A

« Can we take use of entanglement of qubits to encode data? Is this solution perfect?
= Yes/No

0 or LA Fem so%— ¥ _ (D _o . Yes, 4#in 2 qubits | No, (1) sum of the square of data need to be 1
| ? L “_ — [+0.61 -0.35 (2) may have high cost to encode data
) U TR 0 ell— [+0.61  +0.35 N-to-logN mapping! (Amplitude Encoding)

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 22 | George Mason University



Challenges

= |Inconsistent data encoding will lead to high-cost quantum-classical communication

Quantum <«— Classical Computing «<—— Quantum
e ™

|0) O\ 0) N\
|0) A |0) N
10) A B 10) N\
10) Uy(61) N lh=01(x-0) 10) Uy(62) A

2 7 N—
10) o 10) 1
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QF-Mixer

Dr. Weiwen Jiang, ECE, GMU 24 | George Mason University




Encoding: Boolean vs. Probability vs. Amplitude

Data Encoding # of Qubit (C v.s. Q) Data Limitation Encoding Complexity

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 25 | George Mason University



Design Principles

w/o % Path 1
Path 2
A

Path 5
/ .li tangle.
w/ Entangle Path 6

ON-1 I QN-2

w/o Entangle.

w/ Entangle.

ON-1 1 QN-2

* P: Probability encoding

* A: Amplitude encoding

QuantumFlow in Road4NN Workshop @ DAC

Path 3 Output qubits of QN-1 are not entangled

Path 4 "= Principle 1 (Path 1-4)

Path 7 * The output qubits from QN-1 are decoupled

Path 8 with the output qubits of its previous layers.
e Conclusion: Feasible

Output qubits of QN-1 are entangled

=  Principle 2 (Path 5)
* W/o probability encoding involved, there
is no requirement on the decoupling

* Conclusion: Feasible

Dr. Weiwen Jiang, ECE, GMU 26 | George Mason University
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Design Principles

Path 1 Path 3 Output qubits of QN-1 are entangled

w/0 Entangle. w/o Entangle.

A é Path 2 . é Path 4 =  Principle 3 (Path 6)
i Path 5 f Path 7 * When QN-2 is a neuron in the first layer of a
" E"t"'"g'“é Path 6 " E““‘“’“’""E Path & QNN and uses probability encoding, the
QN-1 ; QN-2 QN-1 ; QN-2 input qubits are required to be independent.

* Based on the goal of consistency, when QN-1

* P: Probability encoding is the neuron in other layers, independence

« A: Amplitude encoding requirement should also hold.

* Conclusion: Infeasible

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 27 | George Mason University



Design Principles

w/0 Entangle. Path 1 w/o Entangle. Path 3 OUtPUt quitS Of QN-l are entangled
N Path 2 . Path 4 =  Principle 4 (Path 7)

Path 5 Path 7 e Conclusion: Conditional
w/ Entangle. Path 6 w/ Entangle. Path &  Condition: The inputs qubits of QN-1 are

ON-1 | QN-2 ON-1 | QN-2 reused by the output qubits, such as V-
Layer.
* P: Probability encoding " Principle 5 (Path 8)

. A: Amplitude encoding * Conclusion: Conditional
e Condition:
e OQutput qubits of QN-1 are used as control
end without phase kickback
* The operations on the output qubits of

QN-1 only rotates them around X-axis

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 28 | George Mason University



QF-MixNN
=  Pure quantum architecture
* The neural computation is conducted purely on
guantum devices
* Data pre-processing and post-processing are on
classical devices
= V-Layer should be the first
* Applying amplitude encoding to the input data
* The extreme case is V-Layers only

e Larger R1 provides more real-valued weights

Classical Quantum

Multi-layer QNN can be formed

* U-Layer provides the non-linearity to the V-
Layers, which will be added if R2 =1

e Larger R3 corresponds to more non-linear

layers

Classical

(O
Pre-Pro i i |

i | "|Post-Pro

y

QuantumFlow in Road4NN Workshop @ DAC

Dr. Weiwen Jiang, ECE, GMU

29 | George Mason University



NN .. $Z092 W, W h .- B0
The Design of QF-MixNN Follows the Principles

Input Encoding Output Encoding

Neuron Type

Method Method
w/o Entangle. Path 1 w/o Entangle. Path 3 LU-Neuron Amplilude Probability
V-Neuron Amplitude Amplitude/Probability
A Path 2 P Path 4 P-Neuron Probability Probability
N-Neuron Probability Probability

Path 5 Path 7

w/ Entangle.

|
|
|
|
|
|
|
|
!
!
|
|
|
|
! w/ Entangle.
|
|
|
|
|
|
!

Path 6 Path 8 « V-NEU to V-NEU: Path 5
QN-1{ QN-2 ON-1 T QN-2 + V-NEU to U-NEU: Path 5
. U-NEU to N-NEU: Path 8
. N-NEU to P-NEU: Path 8 Feasible!
. V-NEU to P-NEU: Path 8
Classical Quantum Classical
Data | NN NN, . | D
Pre-Pro o "mmsaill | Post-Pro
| R1 | —R2— | R3 |

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 30 | George Mason University



NN NSNS 2220 S > .00
QF-MixNN Achieves the Best Accuracy on MNIST

TABLE |

EVALUATION OF QNNS WITH DIFFERENT NEURAL ARCHITECTURE

Architecture MNIST-2T MNIST-3T MNIST4F MNIST ST IMNISTS

VQC (VxR1) 9791% 909% 9345% 9135% |52.77%
QuantumFlow 05.63% 9142% 9426%  8953% J6992%
T UNAU D 9736%  9277%  9441%  93.85% |88.46% |
QF-MixNN V+U+P 8745% 82.9% 2 44% 9156% J90.62%
V4P 9172%  7693% 8843%  85.02% [49.57%
—

Input resolutions: T 4 x 4: ¥ 8 x & 5 16 = 16

Non-linearity is important. A linear decision
boundary is not sufficient for complicated tasks.
Real-valued weight is helpful. It increases the

representation capability of QNN significantly.

 QF-MixNN takes the advantage of both VQC-based QNN and QF-Net from Quantumflow.
* Achieve highest accuracy for full set of MNIST dataset

QuantumFlow in Road4NN Workshop @ DAC

Dr. Weiwen Jiang, ECE, GMU
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Outline

= Background
= Co-Design: from Classical to Quantum
=  QuantumFlow for automatic design of quantum neural networks

= Quantum Neurons
=  QF-Mixer for [Q1]
= (Other Recent works and conclusion

= QF-RobustNN for [Q2]
= QFNN Library

Dr. Weiwen Jiang, ECE, GMU 32 | George Mason University




Towards the Automatic Design of Quantum Neural Networks
Further questions:

« [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

FPGA Error: 10715 GPU Error: 10715 STT-RAM Error: 1077 Qubit Error: 10~%~1072

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 33 | George Mason University



On-Going Works in Building Quantum NN Co-Design Stack and Next

The first noise-aware training for Quantum Neural

Current works:
Quatnum NN Co-Design Stack
Network

-
exploration
Quantum [RLSIELY

Flow
Pl

Route

-\

Co-Design

Framework

Can Noise on Qubits Be Learned in Quantum Neural Network? A

Case Study on QuantumFlow

Networks

Mot converged

Logical Q Circuits

@ Application-Specific
Mapping

Physical () Circuits

Inference with Error- Aware
on Quantum Computer
or Quantum Simulator

Model Accuracy

Trained Weights

(1) Train QNN to learn

Terminate

QF-RobustNN

Error Info

100%
0%
B0%
T0%
B0%
50%
40%
30%

Aaelnaoy

Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, W. Jiang, 20%

Accepted by IEEE/ACM International Conference On Computer-Aided

Design (ICCAD), Virtual, 2021.

QuantumFlow in Road4NN Workshop @ DAC

10%
0%

Dr. Weiwen Jiang, ECE, GMU

Acurracy Result from Different Noise Model

Perfect model accuracy: 94%

01

0.001 001 0.05
Error Rate

B Best model under perfect gquantum computers Accuracy B OF-RobustMM Accuracy



On-Going Works in Building Quantum NN Co-Design Stack and Next

) n | thon
Ql?az;ﬁrqtNVI:I/%L-Sesign Stack % QlSklt + O PyTOI’Ch + indo

Index
N

Network

-
exploration

QFNN 0.1.17 documentation » QuantumFlow Neural Network (QFNN) API.

Co-Design
. 4 Table of Contents QuantumFlow Neural Network (QFNN) API.
Framework Programml 4 QuantumFlow Neural Network
Quantum [IIERY e s Indices and tables
Flow This Page . Ind
Place & - Show Source . I\;I]OZﬁle Index

QF-RobustNN
e Search Page

Route

Quick search

%

https://jgub.ece.gmu.edu/cateqories/QF/qgfnn/index.html

QuantumFlow: An End-to-End Quantum Neural Network
Acceleration Framework
Zhirui Hu and W. Jiang
IEEE International Conference on Quantum Computing and
Engineering QCE 21 (QuantumWeek)

QuantumFlow in Road4NN Workshop @ DAC Dr. Weiwen Jiang, ECE, GMU 35 | George Mason University
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https://libraries.io/pypi/qfnn
https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html
https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html
https://github.com/jqub/qfnn
https://github.com/jqub/qfnn

Conclusion & Resources

* QF-Mixer provides the fundamental design principles for the automatic
design of guantum neural networks

 QF-RobustNN can learn the error in the guantum neural network

 QFNN provides interfaces for programming quantum neural networks

(Source Code of All Hands-On in Tutorial)
(Source Code of QFNN API & Place to post Issues)

(Package of QFNN on PYPI) A

(QFNN on Libraries.io) ~  Cowene —

(JQub Website)
(News and slides) arXiv
(QFNN Documents)
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https://jqub.ece.gmu.edu/
https://jqub.ece.gmu.edu/categories/QF
https://jqub.ece.gmu.edu/categories/QF/qfnn/
https://www.nature.com/articles/s41467-020-20729-5
https://arxiv.org/pdf/2012.10360.pdf
https://arxiv.org/pdf/2109.03806.pdf
https://arxiv.org/pdf/2109.03430.pdf
https://github.com/JQub/QuantumFlow_Tutorial
https://github.com/JQub/qfnn
https://pypi.org/project/qfnn/
https://libraries.io/pypi/qfnn/

Thank you!

Dr. Weiwen Jiang, ECE, GMU 37 | George Mason University



