

Towards the Automatic Design of Quantum Neural Networks

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University

wjiang8@gmu.edu

https://jqub.ece.gmu.edu

Slides at https://jqub.ece.gmu.edu/categories/QF/

Speaker

Weiwen Jiang **Assistant Professor** Electrical and Computer Engineering (ECE) George Mason University Room3247, Nguyen Engineering Building wjiang8@gmu.edu (703)-993-5083 https://jqub.ece.gmu.edu/

- Education Background
 - Chongging University (2013-2019)
 - University of Pittsburgh (2017-2019)
 - University of Notre Dame (2019-2021)
- Research Interests
 - **Automatic HW/SW Co-Design**
 - Quantum Machine Learning

First HW/SW Co-Design Framework using NAS

Application HW/SW Algorithm

Co-Design **Framework FNAS** [DAC'19*] [TCAD'20*]

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seq. [MICCAI'20] **IICCAD'201**

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] **GPU [GLSVLSI'21]**

Graph-Based

Social Net [GLSVLSI'21] Drug Discovery [ICCAD'21]

Secure Infernece

NASS [ECAl'20] **BUNET [MICCAI'20]**

Best Paper Award:

IEEE Council on Electronic Design Automation

hereby presents the

2021 IEEE Transactions on Computer-Aided Design Donald O. Pederson Best Paper Award

Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, Jingtong Hu

for the paper entitled

"Hardware/Software Co-Exploration of Neural Architectures"

Maswen Chang

FPGA

NAS Acc.

HotNAS

[CODES+ISSS'20]

XFER [CODES+ISSS'19*]

Hardware

ASIC

Model Compression

NAS for Quan. [ICCAD'19]

Compre.-Compilation [IJCAI'21]

NANDS [ASP-DAC'20*] **ASICNAS [DAC'20]**

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

Best Paper Nominations:

Quantum Computers Have Come to Our Life

Quantum Has Potential For Neural Network

Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

Further questions:

- [Q1] What is the best neural network architecture for quantum acceleration?
- [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

Preliminary Results Answered to Fundamental Questions Fundamental questions:

- Can we implement Neural Network on Quantum Computers?
- Can we achieve benefits in doing so?

Paper Published at:

Invited Contribution and Tutorial Talks at:

IEEE International Conference on Quantum Computing and Engineering — QCE21

Towards the Automatic Design of Quantum Neural Networks Further questions:

• [Q1] What is the best neural network architecture for quantum acceleration?

- 3 × 3 depthwise-separable conv
- 5×5 depthwise-separable conv
- 3×3 atrous conv with rate 2
- 5×5 atrous conv with rate 2
- 3×3 average pooling
- 3×3 max pooling
- skip connection
- no connection (zero)

?

• [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

FPGA Error: 10^{-15} GPU Error: 10^{-15}

STT-RAM Error: 10⁻⁹

Qubit Error: $10^{-4} \sim 10^{-2}$

Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow for automatic design of quantum neural networks
 - Quantum Neurons
 - QF-Mixer for [Q1]
- Other Recent works and conclusion
 - QF-RobustNN for [Q2]
 - QFNN Library

Co-Design

Given:

- Dataset (e.g., ImageNet)
- ML Task (e.g., classification)
- HW (e.g., FPGA spec.)

Do:

- Neural network design
- FPGA design

Objective:

- Accuracy
- Latency
- Energy

• ...

My Previous Background: Co-Design of Neural "Architectures"

Current Works: Co-Design of Neural Networks and Quantum Circuit

Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow for automatic design of quantum neural networks
 - Quantum Neurons
 - QF-Mixer for [Q1]
- Other Recent works and conclusion
 - QF-RobustNN for [Q2]
 - QFNN Library

Towards the Automatic Design of Quantum Neural Networks Further questions:

• [Q1] What is the best neural network architecture for quantum acceleration?

- 3×3 depthwise-separable conv
- 5×5 depthwise-separable conv
- 3×3 atrous conv with rate 2
- 5×5 atrous conv with rate 2
- 3×3 average pooling
- 3×3 max pooling
- skip connection
- no connection (zero)

7

• [Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

FPGA Error: 10^{-15}

GPU Error: 10^{-15}

STT-RAM Error: 10⁻⁹

Qubit Error: $10^{-4} \sim 10^{-2}$

Variational quantum circuit (VQC)-based neuron

V-Neuron (V-NEU)

- A widely used quantum neuron
- Reuse the input qubits as output qubits

 Make use of the entanglement from quantum computing to increase the model complexity

Advantage

Real-valued weights

Disadvantage

- Linear classifier
- Cannot be extended to multiple nonlinear layers with low cost

Q-Neuron

Disadvantage

- Data encoding: one-to-one mapping (almost impossible to achieve quantum advantage)
- Repeat-until-success to build non-linear function (Inefficient)

Q-Non-Linear Neuron

Apply Boolean function to realize any non-linear function

Disadvantage

 Quantum advantage cannot be achieved

Q-Artificial Neuron

Implementing binary perceptron in quantum computer

Disadvantage

 Both inputs and weights are binary

Customized neurons of QuantumFlow

Advantage

 Easy to be stacked to form multiple nonlinear layers

P-Neuron (P-NEU)

- Input encoding: Probability encoding (Angle encoding)
- Output encoding: Probability encoding

Disadvantage

Binary weights

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

Customized neurons of QuantumFlow

Advantage

- It could be connected to P-Neuron seamlessly
- It achieves quantum advantage

U-Neuron (U-NEU)

- Input encoding: Amplitude encoding
- Output encoding: *Probability encoding*

Disadvantage

Binary weights

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

Motivation

- Mixing/connecting different neurons in an NN could improve the performance
- For example: VQC and neurons of QuantumFlow are complementary

Challenges

Different operators/neurons in classical computing can be connected seamlessly.

Connect different quantum neurons may incur high overhead; may not be seamless.

Challenges: Designs May Base On Different Data Encoding

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

Challenges: Designs May Base On Different Data Encoding

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) data needs in the range of [0,1]!
(2) same complexity O(1) as classical

1-to-1 mapping! (Probability Encoding)

Challenges: Designs May Base On Different Data Encoding

Can we encode an arbitrary number into quantum computer? Is it efficient?

- Can we take use of entanglement of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) sum of the square of data need to be 1 (2) may have high cost to encode dataN-to-logN mapping! (Amplitude Encoding)

Challenges

Inconsistent data encoding will lead to high-cost quantum-classical communication

QF-Mixer

Encoding: Boolean vs. Probability vs. Amplitude

Data Encoding	# of Qubit (C v.s. Q)	Data Limitation	Encoding Complexity
Boolean Encoding	O(1) v.s. O(N)	Almost No!	Low
Probability Encoding	O(1) v.s. O(1)	[0,+1]	Low
Amplitude Encoding	O(N) v.s. O(logN)	[-1,+1] and $\sum x^2 = 1$	High

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are not entangled

- Principle 1 (*Path 1-4*)
 - The output qubits from QN-1 are decoupled with the output qubits of its previous layers.
 - Conclusion: Feasible

Output qubits of QN-1 are entangled

- Principle 2 (*Path 5*)
 - W/o probability encoding involved, there
 is no requirement on the decoupling
 - Conclusion: Feasible

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are entangled

- Principle 3 (*Path 6*)
 - When QN-2 is a neuron in the first layer of a QNN and uses probability encoding, the input qubits are required to be independent.
 - Based on the goal of consistency, when QN-1
 is the neuron in other layers, independence
 requirement should also hold.
 - Conclusion: Infeasible

Design Principles

- P: Probability encoding
- A: Amplitude encoding

Output qubits of QN-1 are entangled

- Principle 4 (*Path 7*)
 - Conclusion: Conditional
 - Condition: The inputs qubits of QN-1 are reused by the output qubits, such as V-Layer.
- Principle 5 (Path 8)
 - Conclusion: Conditional
 - Condition:
 - Output qubits of QN-1 are used as control end without phase kickback
 - The operations on the output qubits of QN-1 only rotates them around X-axis

QF-MixNN

Pure quantum architecture

- The neural computation is conducted purely on quantum devices
- Data pre-processing and post-processing are on classical devices

V-Layer should be the first

- Applying amplitude encoding to the input data
- The extreme case is V-Layers only
- Larger R1 provides more real-valued weights

Multi-layer QNN can be formed

- U-Layer provides the non-linearity to the V-Layers, which will be added if R2 = 1
- Larger R3 corresponds to more non-linear layers

The Design of QF-MixNN Follows the Principles

Mauran Tuna	Input Encoding	Output Encoding Method	
Neuron Type	Method		
U-Neuron	Amplitude	Probability	
V-Neuron	Amplitude	Amplitude/Probability	
P-Neuron	Probability	Probability	
N-Neuron	Probability	Probability	

- V-NEU to V-NEU: Path 5
- V-NEU to U-NEU: Path 5
- U-NEU to N-NEU: Path 8
- N-NEU to P-NEU: Path 8
- V-NEU to P-NEU: Path 8

Feasible!

QF-MixNN Achieves the Best Accuracy on MNIST

TABLE I EVALUATION OF QNNs WITH DIFFERENT NEURAL ARCHITECTURE

Architec	ture	MNIST-2†	MNIST-3†	MNIST-4‡	MNIST-5 [‡]	MNIST§
VQC (V:	×R1)	97.91%	90.09%	93.45%	91.35%	52.77%
QuantumFlow		95.63%	91.42%	94.26%	89.53%	69.92%
QF-MixNN	V+U	97.36%	92.77%	94.41%	93.85%	88.46%
	V+U+P	87.45%	82.9%	92.44%	91.56%	90.62%
	V+P	91.72%	76.93%	88.43%	85.02%	49.57%
Input resolutions: † 4×4 ; ‡ 8×8 ; § 16×16 ;						

- Non-linearity is important. A linear decision boundary is not sufficient for complicated tasks.
- Real-valued weight is helpful. It increases the representation capability of QNN significantly.

- QF-MixNN takes the advantage of both VQC-based QNN and QF-Net from Quantumflow.
- Achieve highest accuracy for full set of MNIST dataset

Outline

- Background
- Co-Design: from Classical to Quantum
- QuantumFlow for automatic design of quantum neural networks
 - Quantum Neurons
 - QF-Mixer for [Q1]
- Other Recent works and conclusion
 - QF-RobustNN for [Q2]
 - QFNN Library

Towards the Automatic Design of Quantum Neural Networks Further questions:

• [Q1] What is the best neural network architecture for quantum acceleration?

- 3 × 3 depthwise-separable conv
- 5×5 depthwise-separable conv
- 3×3 atrous conv with rate 2
- 5×5 atrous conv with rate 2
- 3×3 average pooling
- 3×3 max pooling
- skip connection
- no connection (zero)

[Q2] What is the problem for near-term quantum computing, i.e., in NISQ era?

FPGA Error: 10^{-15}

GPU Error: 10^{-15}

STT-RAM Error: 10⁻⁹

Qubit Error: $10^{-4} \sim 10^{-2}$

On-Going Works in Building Quantum NN Co-Design Stack and Next

Current works:Quatnum NN Co-Design Stack

The first noise-aware training for Quantum Neural

Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow

Z. Liang, Z. Wang, J. Yang, L. Yang, J. Xiong, Y. Shi, **W. Jiang**, *Accepted by IEEE/ACM International Conference On Computer-Aided Design (ICCAD*), *Virtual*, 2021.

Acurracy Result from Different Noise Model

On-Going Works in Building Quantum NN Co-Design Stack and Next

Current works: Quatnum NN Co-Design Stack

https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html

QuantumFlow: An End-to-End Quantum Neural Network **Acceleration Framework**

Zhirui Hu and W. Jiang

IEEE International Conference on Computing Quantum Engineering QCE 21 (QuantumWeek)

https://github.com/jqub/qfnn

Conclusion & Resources

- QF-Mixer provides the fundamental design principles for the automatic design of quantum neural networks
- QF-RobustNN can learn the error in the quantum neural network
- QFNN provides interfaces for programming quantum neural networks

https://github.com/JQub/QuantumFlow_Tutorial (Source Code of All Hands-On in Tutorial)

https://github.com/JQub/qfnn (Source Code of QFNN API & Place to post Issues)

https://pypi.org/project/qfnn/ (Package of QFNN on PYPI)

https://libraries.io/pypi/qfnn/ (QFNN on Libraries.io)

https://www.nature.com/articles/s41467-020-20729-5

https://jqub.ece.gmu.edu (JQub Website)

https://jqub.ece.gmu.edu/categories/QF (News and slides)

https://jqub.ece.gmu.edu/categories/QF/qfnn/ (QFNN Documents)

https://arxiv.org/pdf/2012.10360.pdf

https://arxiv.org/pdf/2109.03806.pdf

https://arxiv.org/pdf/2109.03430.pdf

Thank you!