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Abstract—In recent years, quantum computers have attracted
extensive research interests due to their potential capability of
solving problems which are not easily solvable using classical
computers. In parallel to the constant research aiming at the
physical implementation of quantum processors, there is another
branch of research developing quantum algorithms for real-
life applications, many of which need to perform arithmetic
operations. As one of the most important operations, quantum
addition has been adopted in Shor’s algorithm, quantum lin-
ear algebra algorithms and various quantum machine learning
applications. Since precision is always a non-trivial issue to
determine during the computation, most-significant digit-first
quantum addition can be a fundamental operation for variable
precision computing. Therefore, this paper proposes the first
quantum adder circuit that is able to compute from the most-
significant digits, which demonstrates the advantages over the
state-of-the-art quantum adders requiring carry propagation to
produce results from least-significant digits. We first present a
review of quantum addition circuits design, and then propose a
novel method to implement quantum most-significant digit-first
adders. Scalability and quantitative comparisons for different
quantum full adder, quantum carry-ripple adder and quantum
most-significant digit-first adder circuits have been investigated,
where all circuits are implemented on IBM Qiskit SDK.

I. INTRODUCTION

Quantum computing (QC) has received extensive attention
in developing the first large-scale quantum computer, which
has already become one of the most promising technology
for future computer systems [1], [2]. As McKinsey consulting
estimated, the quantum computing industry was worth $507.1
million in 2019, and may exceed $65 billion by 2030 [3].
Since a desired scale fault-tolerant quantum computer still
remains unreachable, dealing with noise errors in current
Noisy Intermediate Scale Quantum (NISQ) technology is of
high significance [4]. Efforts are required to build functionally
correct quantum circuits to overcome quantum operation errors
and quantum coherence errors in the NISQ era. One popular
solution nowadays is to design efficient quantum arithmetic
circuits, where one of the fundamental components is the adder
circuit [5]-[9].

The main purpose of this paper is to design an efficient
method for quantum addition, which combines quantum gate
theory with traditional most-significant digit-first (MSDF) and
lest-significant digit-first (LSDF) arithmetic algorithms. Based
on the quantum development platform provided by IBM
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Qiskit [10], we aim to provide a library of quantum arithmetic
operators, including different quantum adder designs.

The main model of quantum computing is related to quan-
tum circuit design, in which logical gates are replaced with
quantum ones [11]. Quantum gates must be reversible which
are required to obey the laws of quantum physics. Therefore,
reversibility not only results in energy saving but also becomes
a fundamental requirement of quantum computing. Circuits
for performing the quantum addition are especially relevant
with several quantum algorithms, such as Shor’s algorithm,
that achieve a speedup over the best known classical methods.
Shor’s algorithm is a famous quantum algorithm used to fac-
torise numbers and compute discrete logarithms in polynomial
time [12]. Its classical counterparts are cryptographic protocols
such as the RSA cryptosystem [11] or Diffie-Hellman key
exchange [13], leading to highly non-trivial actual implemen-
tations as the data size increasing. In the past two decades,
a wide variety of reversible quantum adder circuits have
been presented. However, it is not always easy to analyze or
compare them due to the following two main reasons:

o Lack of consistent metrics used to evaluate each design.
o Lack of detailed design parameters discussion and com-
parison.

Therefore, we present a brief review of quantum adder circuit
designs, with the hope to find out how to choose a right
quantum adder circuit if we do not have much information
about quantum arithmetic, and how we can optimise a quantum
circuit design.

While employing arithmetic operators to solve a particular
problem, how to choose an appropriate operation precision is
usually a difficult problem. In classical computing, designers
generally use finite-precision arithmetic, most of which op-
erate least-significant bits first [14]. The precisions of such
implementations are either under- or over-budgeted for the
computation of a result to a particular accuracy [15]. As
an alternative solution, use of MSDF arithmetic helps us to
perform variable-precision computing [16]. After reviewing
the existing quantum adder circuits, all of them belong to
LSDF fashion. Therefore, in this paper, we investigate the
design methods of MSDF quantum addition. Scalability and
quantitative comparisons in terms of qubit usage, implemen-
tation cost (i.e. quantum gate cost), and latency (i.e. circuit
depth) of our proposal are discussed.

The contributions of this paper are summarised as follows:
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Fig. 1: Symbols and transformation of some elementary quan-
tum gates.

o We present a review of the state-of-the-art quantum adder
circuit designs, and provide consistent comparisons for
different quantum addition designs.

o We propose the first design method for quantum MSDF
adder circuits which can be used for variable precision
calculations.

e A library of quantum circuit implementations for quan-
tum LSDF and MSDF addition.

o Quantitative comparisons and scalability analysis for
quantum full adder, carry-ripple adder and MSDF adder
circuits are provided, showing the design space explo-
ration on qubit usage, implementation cost and latency.

II. BACKGROUND
A. Basic Elements of Quantum Circutis

A quantum circuit is made up of elementary quantum gates,
such as Hadamard gate (H), phase gate (5), NOT (X) and
Controlled-NOT (CNOT) or C'X gate [17]. These elementary
quantum gates belong to Clifford group, because any gate in
this group can be produced by combinations of Hadamard,
phase and CNOT gates [18]. Figs. 1a, 1b and 1c show the
symbolic description of exemplar Clifford gates. However,
in most fault-tolerant quantum computing architectures, the
most difficult quantum gates to produce are non-Clifford
gates [18], such as Toffoli gate [19] and Peres gate [20].
These are some common quantum gates composed of Clifford
and non-Clifford quantum gates. Each of them represents a
state transformation on some qubits and has a corresponding
transformation matrix, which is a unitary matrix. Figs. 1d, le,
1f and 1g show the symbolic description of these non-Clifford
gates.

Fig. 1a illustrates a NOT gate which is a 1-qubit gate, used
to invert the state of the qubit. The CNOT gate is a 2-qubit
quantum gate, as is shown in Fig. 1b, where one of these
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Fig. 2: Binary MSDF adders. Left: serial. Right: parallel [22].

qubits is a control qubit and another one is a target qubit
whose state will be inverted if and only if the state of the
control qubit is |1). Hadamard gate, illustrated in Fig. Ic,
is used to create a superposition given a basis state, where
|0) can be mapped to w and |1) to w In Fig. 1d,
the Toffoli gate is a quantum gate with 3 qubits. Two of
these qubits are control qubits and the third one is a target
qubit whose state will be inverted if and only if the state of
control qubits is |11). Toffoli gate is composed of 5 elementary
quantum gates. Fig. le indicates NG gate which is built by 1
CNOT gate, 1 NOT gate, 2 Toffoli gates and 1 Swap gate.
The total number of elementary quantum gates consumed is
13. As is shown in Fig. If, the Peres gate is also a 3-qubit
gate, which works similar to the Toffoli gate in combination
with a CNOT gate. Peres is composed of 4 elementary gates.
Square-root of CNOT gate and its hermitian are shown in
Fig. 1g, used to simplify the quantum logic for quantum circuit
implementations [8].

To gain information about the state of qubits after being
transformed by a quantum gate, measurement is needed. The
act of measurement collapses the state of qubits, which is
called the observer effect [21]. When a qubit is measured,
its superposition state will collapse into a well-defined state
of either |0) or |1). It should be noted that it is the state of the
qubit rather than the qubit itself that is changed. Therefore,
the qubit can be reused with a well-defined state.

B. Most-Significant Digit-First Addition

Most-significant digit-first arithmetic is seeing renewed in-
terest owing to the emergence of domain-specific hardware ac-
celerators for high-performance computing applications, par-
ticularly in the field of machine learning [23]. Arithmetic
algorithms have two typical operation modes, i.e. LSDF and
MSDF [22]. In LSDF computing, operand and result digits
are applied from the least-significant end, such as traditional
addition and multiplication. MSDF computing instead applies
operand and result digits from the most-significant end. A de
facto standard for MSDF arithmetic is online arithmetic [22].
Users can choose both digit-serial and -parallel online opera-
tors in their design. For example, digit-serial online adder is
presented in Fig. 2 (left), while duplication of the serial adder
M times and the removal of its registers lead to the creation of
a M-digit parallel online adder, as shown in Fig. 2 (right) [22].
Even though carrys are delivered at the LSD end and generated
at the MSD end in online adders, there is no carry chain; the
critical path lies across two full adders (FAs) [22]. This implies
online adder’s suitability for the construction of more complex



online operators, such as multiplication and division. In this
paper, we employ the traditional MSDF addition algorithms
to build quantum MSDF adder circuits, with the optimizations
of reducing the usage of qubits, garbage qubits and quantum
gates.

ITI. REVIEW OF QUANTUM ADDITION CIRCUITS

A full adder (FA) in a classical circuit can be used to
add three classical bits with an input carry bit and two
operands. FA is a fundamental mathematical calculation circuit
in classical computers, characterized by

Sum=A@BaoC
Carry = AB@ AC @ BC

In quantum computing, quantum gates are used to replace
logical gates [24] to form a quantum full adder (QFA). The
aforementioned discussions briefly introduced the functional-
ity of different quantum gates. Given the available quantum
gate models, we can construct a quantum full adder circuit.
There are several solutions that allow performing addition in
an efficient way. In this section, we classified quantum adder
circuits by the number of qubits consumed.

A. Design of 7-qubit Quantum Full Adder
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Fig. 3: Design of 7-qubit quantum full adder [5].

Mazumder presented a reversible quantum adder circuits by
proposing a Khan Gate (NG), i.e. the 4x4 parity preserv-
ing reversible gate [5]. As shown in Fig. 3, Khan Gate is
implemented using quantum gate CNOT, NOT, positive and
negative controlled Toffoli gate and Swap gate. This structure
is composed of 7 qubits and the number of garbage qubits is
5. Since this adder circuit contains 3 NG gates, the number of
elementary quantum gate cost is 15.

B. Design of 5-qubit Quantum Full Adder

Fig. 4 shows a QFA circuit with 5 qubits, including two
input data qubits, one input carry qubit, one output carry qubit,
and one addition result qubit [6]. This structure has 3 garbage
qubits and its gate cost is 7. Since three input qubits can be
garbage qubits [25] in the end of the quantum circuit, these
qubits can also be used as output qubits. In other words, input
qubits can be reused to perform output qubits.
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Fig. 4: Design of 5-qubit quantum full adder [6].
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Fig. 5: Design of 4-qubit quantum full adder based on Peres
gates [7].

C. Design of 4-qubit Quantum Full Adder

1) Use of Peres Gates: Fig. 5 shows a quantum adder
circuit with 4 qubits, where the third qubit is served as input
qubit |Ci,) and output qubit |[Sum) at the same time. This
architecture is called PFAG, employing two Peres gates [7].
Since this structure is composed of 2 Peres, the gate cost is
2, along with 2 garbage qubits.

2) Use of Controlled Square Root of X Gate: The square
root of CNOT gate, namely V gate, owes its name to the
following properties:

VX VX=X (1)
VXT VX=X 2)
VX VXt =1 3)

where the dagger of a matrix is obtained by conjugating and
transposing the matrix [17]. The conjugate matrix of a matrix
is obtained by performing the complex conjugate of each
element. Possible implementations for the controlled square
root of CNOT and for its application of quantum addition
are shown in Fig. 6. With the use of V' gates, the number
of quantum gates is reduced for an adder circuit design. As
is shown in Fig. 6, the quantum adder circuit is made up of
only 6 gates, and consumes 4 qubits and 2 garbage qubits,
respectively.
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Fig. 6: Design of 4-qubit quantum full adder based on V'
gates [8]. The VT gate is Hermitian of V' gate.
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Fig. 7: Design of 4-qubit quantum full adder based on qubit
state reuse [9].

3) Qubit State Reuse: Cuccaro et al. proposed a novel
carry-ripple adder with less qubit usage [9]. When bit-width
of input data is 1, the carry-ripple adder equals to a full adder
in which two garbage qubits maintain their initial state, i.e.
qubit state reuse. Two different structures are proposed in
this work, illustrated in Fig. 7. In the 2-CNOT version, 4
CNOT gates and 2 Toffoli gates are contained. Therefore, the
number of elementary quantum gates is 14. For the 3-CNOT
version, 2 NOT gates, 6 CNOT gates, and 2 Toffoli gates are
contained. Although the number of elementary quantum gates
is 18, which is larger than the former design, it admits greater
parallelism.

4) Reduction of Non-Clifford Gates: Gigney reduced the
number of non-Clifford gates used to perform a quantum addi-
tion, because non-Clifford gates dominate the cost of quantum
computation [26]. Gigney followed the work mentioned in [9],
and built a temporary logical-AND operator to replace Toffoli
gate in adder circuits. As is shown in Fig. 8, this method
aims to design quantum adder circuits with fewer non-Clifford
gates.
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Fig. 8: Design of 4-qubit quantum full adder by reducing non-
Clifford gates usage [26].

IV. DESIGN OF QUANTUM MSDF ADDITION

Using classic online addition algorithm and the state-of-
the-art quantum adder circuits as a starting point, we now
describe the construction of quantum MSDF addition capable
of performing results in the left-to-right mode.

A. Proposed Architecture

As is shown in Section II, an MSDF adder makes use of full
adders to add digits of inputs. Therefore, we now investigate
the construction of quantum MSDF adders based on different
quantum full adders, in order to provide some design space
exploration for a balanced design of quantum adder circuits. In
quantum MSDF addition, the FAs are substituted with QFAs.
Mirrored to classical parallel MSDF addition in Fig. 2, the
length of input data of the proposed quantum MSDF addition
is p, which corresponds to 2p qubits using de facto radix-2
signed-digit number representation [22].

We propose three design strategies for quantum adder
circuits design. The first strategy is called direct quantum
addition implementation. Before the actual implementation,
we first build a library of quantum LSDF adders (i.e. QFAs),
so that designers can instantiate a QFA given a particular
specifications in terms of gate cost, latency (circuit depth),
and the number of qubits required.

Due to the scarce qubit resource, we further investigate an
optimised design method for qubit-efficient quantum circuits.
Versus chaining the arithmetic operators directly, we anal-
yse the data dependencies in the data flow graph, extracted
from digital circuits. When an operator’s input states stays
unchanged at the output, we can employ the qubit-reuse QFA,
as was elaborated in Section III.C, to reduce the total number
of qubits for quantum MSDF adder. This design optimisation
will be discussed and demonstrated in Section.V.B.

Apart from the optimisation target of qubit usage, there are
other factors which can be considered for design space explo-
ration of quantum circuits design, such as implementation cost
(i.e. the number of quantum gates), latency (i.e. circuit depth)
and computation accuracy [26]. Although this paper focuses
on addition, we consider our main conceptual contribution to
other quantum arithmetic operations and quantum algorithms.

B. Quantum MSDF Adder Circuits

We first present a direct implementation of a quantum
MSDF adder. Herein we choose to use 7-qubit QFAs as a
baseline, and the architecture of a quantum MSDF adder is
shown in Fig. 9, where the red dotted part is a basic unit of
this quantum MSDF adder circuits and can be duplicated in the
implementation. In this unit, the number of qubits, quantum
gates and garbage qubits are 12, 33 and 10, respectively.
Consider that input data is represented by p-bit precision,
there will be p units. At the bottom of this circuit, there
will be 2 additional qubits used for initial carry-in values.
Consequently, this p-bit quantum MSDF adder requires 12p+2
qubits, 33p quantum gates (including 6 swap gates) and 10p
garbage qubits.

In order to reduce the number of qubits used in quantum
MSDF adder, we further employ 5-qubit QFAs and 4-qubit
QFAs to construct quantum MSDF adders. Fig. 10 represents
a design with 5-qubit QFAs, where 8p+2 qubits, 17p quantum
gates and 6p garbage qubits are used.

Since there have been several 4-qubit QFAs available, we
can choose the most appropriate QFA to construct a quantum
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MSDF circuit with the implementation cost and accuracy
tradeoff. Fig. 11 employed the Peres-based QFA to construct
quantum MSDF adder. For a p-bit adder, it requires 6p + 2
qubits, 7p quantum gates and 4p garbage qubits. When we
use V-gate based QFA to construct a p-bit quantum MSDF
adder, the quantum gates usage increases to 15p, and the
number of qubits and garbage qubits usage are the same as the
Peres-based implementation. However, the Peres gate can be
made up of 3 V-gate and a CNOT gate, therefore, this design
costs fewer elementary quantum gates than Peres-based im-
plementation. Moreover, quantum MSDF adders implemented
following Cuccaro et al.’s proposal require 6p + 2 qubits, 17p
quantum gates and 4p garbage qubits. To achieve an area-
efficient quantum MSDF adder, we should reduce the usage
of non-Clifford gates, as suggested by Gigney [26]. Following
the principles to optimise non-Clifford gate usage [26], Fig. 14
shows a circuit design with only 6p + 2 qubits, 15p quantum
gates and 4p garbage qubits. Note that the number of gates
represents the summation of different quantum gates used.
A non-Clifford gate will be composed of multiple Clifford
and non-Clifford gates, resulting in more elementary quantum
gates usage. The detailed classification will be addressed in
Tables II and III in Section V.

V. EVALUATION
A. Experimental Setup

In this section, a series of experiments are implemented
in the quantum development platform provided by IBM
Qiskit [10]. Some metrics are used to compare different
designs. Since the number of qubits in the state-of-the-art
quantum computers is several dozens, qubit resource is ac-
tually extremely scarce. Therefore, the number of qubits is
the most important metric to characterize the superiority of
a quantum circuit design [4]. The cost of quantum gates is
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Fig. 10: Quantum MSDF Adder Based on 5-qubit QFA [6].

also used to show the total usage of quantum primitives [20].
Finally, the number of garbage qubits which can be reused
in later quantum circuits and circuit depth which is related to
latency are discussed.

B. Scalability and Quantitative Comparisons for Different
QOFAs

In Section III, we reviewed the state-of-the-art QFA circuits
using different design strategies. Table I shows the experi-
mental comparison results of different QFA circuit designs.
The data is reported by reproducing the designs on IBM
Qiskit platform. Considering the fact that qubits are the most
scarce resource in quantum computers, 4-qubit QFAs are more
piratical for real-world quantum applications. Even though
there are four 4-qubit QFAs available, each is performed by
different quantum gate models. For a specific application, we
should choose an appropriate gate model to build 4-qubit
QFAs [26].

To further demonstrate the superiority of QFAs, we also
employ these QFAs to construct a quantum carry-ripple adder
(QCRA). Carry-ripple addition (CRA) is one of the mostly
used classical LSDF addition algorithms [22]. CRA is made



TABLE I: Comparison of Binary Quantum Full Adder

Design # gates

methods # qubits

NOT CNOT Toffoli Peres V' Logical AND

. Circuit depth
# garbage qubits
NOT CNOT Toffoli Peres V' Logical AND

Mazumder et al. [5]
Sohel et al. [6]
Islam [7]
Biswas et al. [8]
Cuccaro et al. [9]

Gidney [26]
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TABLE II: Comparison of carry-ripple adders with different QFAs

QFA ) # gates ) Circuit depth
Benchmark hod # qubits # garbage qubits
methods NOT CNOT Toffoli Peres V Logical AND NOT CNOT Toffoli Peres V  Logical AND
QCRA-1 Mazumder et al. [S] 6p+1  3p 3p 6p 0 5p 2p+1 1 4p+2 0 0 0
QCRA-2 Sohel et al. [6] 4p+1 Sp 2p 0 3p 0 2p+2 p+l 0 0 0
QCRA-3 Islam [7] 3p+1 0 0 0 2p 0 2p 0 0 0 p+l1 0 0
QCRA-4  Biswas et al. [8] 3p+1 0 2p 0 0 4p 0 2p 0 p+l 0 0 2p+2 0
QCRA-S Cuc"zo;g;’l' O 502 2p4 5p3 2p1 0 0 0 p+l 0 5 21 0 0 0
QCRA-6 Gidney [26] 3p+1 0 Sp 0 0 0 2p 2p 0 3p 0 0 0 2p
TABLE III: Comparison of quantum MSDF adders with different QFAs
# gates Circuit depth
Benchmark Q];Ad‘ # qubits £ # garbage qubits P
methods NOT CNOT Toftfoli Peres V' Logical AND NOT CNOT Toffoli Peres V' Logical AND
QMA-1  Mazumder et al. [5] 12p+2  9p 6p 12p 0 10p 7 5 11 0 o0 0
QMA-2 Sohel et al. [6] 8p+2 3p 10p 4p 0 6p 1 6 3 0 o0 0
QMA-3 Islam [7] 6p+2  3p 0 0 4p 0 4p 2 0 0 4 0 0
QMA-4 Biswas et al. [8] 6p+2  3p 4p 8p 0 4p 2 2 0 0o 7 0
QMA-5  Cuccaro et al. [9] 6p+2 3p 10p 4p 0 4p 2 8 4 0 0 0
QMA-6 Gidney [26] 6p+2 3p 10p 0 2p 4p 2 6 0 (U] 2

up of an array of FAs. In QCRA implementation, FAs are
replaced by QFAs. Table II elaborates the design parameters
for different QCRA circuits, including the number of qubits,
gates and garbage qubits. We can see that QCRA-5 using
Cuccaro et al.’s proposal [9] demonstrates the superiority in
terms of the number of qubits and garbage qubits consumption
over all other QCRA designs. In terms of implementation
cost, QCRA-6 employs logical AND [26] units to replace
the non-Clifford gates, thereby leading to much reduction in
the gate consummation. It is also noted that different QCFAs
have different circuit depth, which leads to different latency
during the computation. Therefore, the realisation of low-depth
quantum circuits is an interesting optimisation direction, a task
we left for a future work.

We remark that some special quantum gates are not con-

tained in Qiskis, therefore we replaced them with the com-
bination of other general quantum gates. For example, there
is no Peres gate in Qiskit circuit library [27]. However, Peres
gate can be substituted by using a Toffoli gate and a CNOT
gate [28].

C. Evaluation of Quantum MSDF Adders

In Section IV, principles of quantum MSDF adders have
been introduced. Table III shows the comparisons of different
quantum MSDF adder (QMA) circuits. Similar findings can be
found with respect to the discussions for QFAs and QCRAs.
Quantum MSDF adders based on Mazumder et al.’s [5] and
Sohel et al.’s [6] QFAs consume 2.0x and 1.3x more qubits
and 2.5x and 1.5x more garbage qubits versus the other
MSDF adders using 4-qubit QFAs. Furthermore, we can find



Fig. 11: Quantum MSDF Adder based on 4-qubit QFA using
Peres gates.
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Fig. 12: Quantum MSDF Adder based on 4-qubit QFA using
V gates.

that quantum MSDF adders following Biswas er al.’s [8],
Islam et al.’s [7] and Cuccaro et al.’s QFAs consume more
elementary quantum gates because each Toffoli, Peres, and V'
gate is composed of multiple elementary quantum gates. If we
only consider the number of qubits and implementation cost,
quantum MSDF adder based on Gidney’s proposal [26], named
QMA-6, would be an appropriate choice. However, Gidney’s
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Fig. 14: Quantum MSDF adder based on less non-Clifford
gates usage.

QFAs introduced phase errors and have to assume that the
intermediate quantum gates are not sensitive to these phase
errors [26]. This issue would result in a potential security
vulnerability to the overall system.



D. Evaluation of Quantum Adder Tree

Since adder tree is one of the most widely used circuits
in quantum machine learning and quantum image process-
ing [29], herein we investigate the scalability of qubit-efficient
quantum adder tree circuits. In classical LSDF adder tree,
we usually need to analyze the precision of each layer,
thereby only allowing finite-precision addition. Use of MSDF
arithmetic provides a possible solution to overcome the pre-
determination of precision in adder trees. We can reuse the
MSDF arithmetic circuits to calculate less significant bits as
time grows. We chose the QMA-6 to construct a quantum
adder tree circuit, because it consumes the least qubits and
quantum gates among all implemented quantum MSDF adders.
Consider that there are 2" p-bit numbers to calculate, a n-
level quantum adder tree is needed. The number of qubits and
quantum gates used in this quantum adder tree circuit scale
linearly with the precision p and exponentially with n, in the
complexity of O(2"p).

VI. CONCLUSIONS

In this paper, we analysed the design parameters of the
state-of-the-art quantum full adder circuits. Our evaluation
adopts qubits, quantum gates and circuit depth as key metrics
for consistent comparisons among different quantum adder
designs. After a quantitative investigation on previous quan-
tum adder designs, we observe that all of them require the
carry chains to generate results from least-significant digits.
Therefore, we proposed the design method of quantum MSDF
adders which can generate results from most-significant digits.
All quantum circuits are evaluated on the IBM Qiskit SDK.
Scalability and quantitative comparison for quantum full adder,
quantum carry-ripple adder, quantum MSDF adder circuits
were provided in order to analyse their applicability. In the
future, we will extend our arithmetic library to more complex
arithmetic operations. We are also keen to adapt our proposed
approach in quantum machine learning algorithms, for which
we expect to achieve substantial performance gains due to our
qubit-efficient arithmetic circuits.
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